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Chapter Ten

Sequences, Series, and All That

10.1 Introduction

Suppose we want to compute an approximation of the number e by using the Taylor

polynomial pn for f x e x( ) =    at a =0.  This polynomial is easily seen to be
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We could now use pn ( )1 as an approximation to e .  We know from the previous chapter

that the error is given by
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where 0 1< <ξ .  Assume we know that e <3, and we have the estimate
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Meditate on this error estimate.  It tells us that we can make this error as small as we like by

choosing n sufficiently large.  This is expressed formally by saying that the limit of

pn ( )1 as n becomes infinite is e .  This is the idea we shall study in this chapter.

10.2  Sequences

A sequence of real numbers is simply a function from a subset of the nonnegative

integers into the reals.  If the domain is infinite, we say the sequence is an infinite

sequence. (Guess what a finite sequence is.)  We shall be concerned only with infinite

sequences, and so the modifier will usually be omitted. We shall also almost always

consider sequences in which the domain is either the entire set of nonnegative or positive

integers.  

There are several notational conventions involved in writing and talking about

sequences.  If f Z: + → R , it is customary to denote f n( )  by f n  , and the sequence itself

by ( )fn . (Here Z+  denotes the positive integers.)  Thus, for example, 
1

n







 is the sequence
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f defined by f n
n

( ) = 1
.   The function values f n  are called terms of the sequence.

Frequently one sees a sequence described by writing something like

14 9 2, , , , ,K Kn  .

This is simply another way of describing the sequence ( ).n 2

Let ( )an be a sequence and suppose there is a number L such that for any ε >0,

there is an integer N such that | |a Ln − < ε  for all n > N .  Then L is said to be a limit of the

sequence, and ( )an  is said to converge to L .  This is usually written lim
n

na L
→∞

= . Now,

what does this really mean?  It says simply that as n gets big, the terms of the sequence get

close to L .  I hope it is clear that 0 is a limit of the sequence  
1

n







.    From the discussion

in the Introduction to this chapter, it should be reasonably clear that a limit of the sequence

1
1

2

1

6

1+ + + +





K
n!

 is e .

The graph of a sequence is pretty dreary compared with the graph of a function

whose domain is an interval of reals, but nevertheless, a look at some pictures can help

understand some of these definitions.  Suppose the sequence ( )an converges to L .  Look at

the graph of ( )an :

The fact that L is a limit of the sequence means that for any ε >0, there is an N  so that to the

right of N  , all the spots are in the strip of width 2ε centered at L.

Exercises
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1 . Prove that a sequence can have at most one limit (We may thus speak of the limit of 

a sequence.).

2 .  Give an example of a sequence that does not have a limit.  Explain.

3 . Suppose the sequence ( ) , , ,a a a an = 0 1 2 K  converges to L.  Explain how you know 

that the sequence ( ) , , ,a a a an+ =5 5 6 7 K  also converges to L.

4 . Find the limit of the sequence 
3
2n







, or explain why it does not converge.

5 . Find the limit of the sequence 
3 2 72

2

n n

n

+ −





 , or explain why it does not converge.

6 . Find the limit of the sequence 
5 7 2

3 10

3 2

3 2

n n n

n n n

− + +
+ − +







 , or explain why it does not 

converge.

7 . Find the limit of the sequence 
logn

n







, or explain why it does not converge.

10.3  Series

Suppose ( )an is a sequence.  The sequence ( )a a an0 1+ + +K is called a series. It is a

little neater to write if we use the usual summation notation: a k
k

n

=
∑









0

.  We have seen an

example of such a thing previously; viz.,

1
1

2

1

6

1 1

0

+ + + +



 =











=
∑K

n kk

n

! !
.

It is usual to replace  lim
n

k
k

n

a
→∞

=
∑

0

 by ak
k =

∞

∑
0

.  Thus, one would, for example, write

e
kk

=
=

∞

∑ 1

0 !
.
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One also frequently sees the limit ak
k =

∞

∑
0

 written as a a an0 1+ + + +K K .  And one more word

of warning.  Some poor misguided souls also use ak
k =

∞

∑
0

 to stand simply for the series

a k
k

n

=
∑









0

.  It is usually clear whether the series or the limit of the series is meant, but it is

nevertheless an offensive practice that should be ruthlessly and brutally suppressed.

Example

Let's consider the series 
1

2
1

1

2

1

4

1

20
k

k

n

n
=

∑







 = + + + +



K .  Let

Sn n
= + + + + +1

1

2

1

4

1

8

1

2
K .  Then

1

2

1

2

1

4

1

8

1

2

1

2 1
Sn n n

= + + + + + +K .

Thus

S
S Sn

n n n2

1

2
1

1

2 1
= − = − + .

This makes it quite easy to see that lim
n

nS
→∞

=
2

1, or lim
n

nS
→∞

= 2 .  In other words,

1

2
2

0
k

k =

∞

∑ = .

Observe that for series  a k
k

n

=
∑









0

 to converge, it must be true that lim
n

na
→∞

= 0 .  To see

this, suppose L ak
k

=
=

∞

∑
0

, and observe that a a an k
k

n

k
k

n

= −
= =

−

∑ ∑
0 0

1

.  Thus,

lim lim lim lim

.

n
n

n
k

k

n

k

k

n

n
k

k

n

n
k

k

n

a a a a a

L L

→∞ →∞ = =

−

→∞ = →∞ =

−

= −








 = −

− =

∑ ∑ ∑ ∑
0 0

1

0 0

1

0                                                  =
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In other words, if lim
n

na
→∞

≠ 0 , then the series a k
k

n

=
∑









0

does not have a limit.

Another Example

Consider the series 
1

1 kk

n

=
∑







 .  First, note that lim

n k→∞
=1

0 .  Thus we do not know that

the series does not converge; that is, we still don't know anything.  Look at the following

picture:

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The curve is the graph of y
x

= 1
.  Observe that the area under the "stairs" is simply 

1

1

11

kk =
∑ .

Now convince yourself that 
1

1 kk

n

=
∑  is larger than the area under the curve y

x
= 1

 from x =1

to x = n+1.  In other words,

1 1
1

1
1

1

k x
dx n

k

n n

=

+

∑ ∫> = +log( ) .
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We know that log( )n + 1  can be made as large as we wish by choosing n sufficiently large.

Thus 
1

1 kk

n

=
∑  can be made as large as we wish by choosing n sufficiently large.  From this it

follows that the series 
1

1 kk

n

=
∑







  does not have a limit.  (This series has a name.  It is called

the harmonic series. )

The method we used to show that the harmonic series does not converge can be used

on many other series. We simply consider a picture like the one above. Suppose we have a

series a k
k

n

=
∑









1

 such that ak > 0  for all k . Suppose f is a decreasing function such that

f k ak( ) =  for all k .  Then if the limit lim ( )
R

R

f x dx
→∞ ∫

1

 does not exist, the series is divergent.  

Exercises

8 . Find the limit of the series 
1

30
n

k

n

=
∑







 , or explain why it does not converge.

9 . Find the limit of the series 
5

30 nk

n

+











=
∑ , or explain why it does not converge.

10. Find a value of n that will insure that 1
1

2

1

3

1
106+ + + + >K

n
.

11. Let 0 1≤ ≤θ . Prove that sin ( )
( )!

θ θ= −
+

+

=

∞

∑ 1
2 1

2 1

0

k
k

k k
 .

[Hint:  p
kn

k
k

k

n

2 1

2 1

0

1
2 1+

+

=

= −
+∑( ) ( )

( )!
θ θ

 is the Taylor polynomial of degree     <     2n+1 for 

the function f ( ) sinθ θ=  at a = 0.]
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12. Suppose we have a series a k
k

n

=
∑









1

 such that ak > 0  for all k , and  suppose f is a 

decreasing function such that f k ak( ) =  for all k .  Show that if the limit 

lim ( )
R

R

f x dx
→∞ ∫

1

 exists, then the series is convergent.

13. a) Find all p for which the series 
1

1 k p
k

n

=
∑







   converges.  

b) Find all p for which the series in a) diverges.

10.4 More Series

Consider a series a k
k

n

=
∑









0

in which ak ≥ 0  for all k .  This is  called a positive

series.   Let bk
k

n

=
∑









0

be another positive series.  Suppose that b ak k≤  for all k     >     N  , where

N  is simply some integer.  Now suppose further that we know that a k
k

n

=
∑









0

 converges.

This tells us all about the series bk
k

n

=
∑









0

.  Specifically, it tells us that this series also

converges. Let's see why that is.  First note the obvious: bk
k

n

=
∑









0

converges if and only if

bk
k N

n

=
∑







  converges.  Next, observe that for all n , we have b ak

k N

n

k
k N

n

= =
∑ ∑≤ , from which it

follows at once that lim
n

k
k N

n

b
→∞

=
∑  exists.

Example
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What about the convergence of the series 
1

3 43 2
1 n n nk

n

+ + +










=
∑ ?  Observe first that

1

3 4

1
3 2 3n n n n+ + +

< .  Then observe that the series 
1

3
1 nk

n

=
∑







 converges because

lim lim
R R

R

x
dx

R→∞ →∞
= − +





=∫ 1 1

3

1

3

1

331 2
. Thus 

1

3 43 2
1 n n nk

n

+ + +










=
∑ converges.

Suppose that, as before, a k
k

n

=
∑









0

 and bk
k

n

=
∑









0

are positive series, and b ak k≤  for all

k     >     N  , where N is some number.  This time, suppose we know that bk
k

n

=
∑









0

is divergent.

Then it should not be too hard for you to convince yourself that a k
k

n

=
∑









0

 must be

divergent, also.

Exercises

Which of the following series are convergent and which are divergent? Explain your

answers.

14.
1

20 e kk
k

n

+










=
∑

15.
1

2 10 kk

n

+










=
∑

16.
1

2 log kk

n

=
∑









17.
1

12
0 k kk

n

+ −










=
∑
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10.5 Even More Series

We look at one more very nice way to help us determine if a positive series has a

limit.  Consider a series a k
k

n

=
∑









0

, and suppose ak > 0  for all k.  Next suppose the

sequence 
a

a
k

k

+





1  is convergent, and let

r
a

ak

k

k

=
→∞

+lim 1 .

The number r tells us almost everything about the convergence of the series a k
k

n

=
∑









0

.  Let's

see about it.

First, suppose that r < 1.  Then the number ρ = + −
r

r1

2
 is positive and less than 1.

For all sufficiently large k, we know that 
a

a
k

k

+ ≤1 ρ .  In other words, there is an N  so that

a ak k+ ≤1 ρ  for all k N≥ .  Thus

a a a a ak k k k N
k N

+ − −
+ −≤ ≤ ≤ ≤ ≤1 1

2
2

3 1ρ ρ ρ ρK .

Look now at the series

( )a aN
k N

k N

n

N
n Nρ ρ ρ ρ−

=

−∑







 = + + +( )1 2 K .

This one converges because the Geometric series ρ k

k

n

=
∑









0

converges (Recall that

0 1< <ρ . ).  It now follows from the previous section that our original series a k
k

n

=
∑









0

 has a

limit.

A similar argument should convince you that if r > 1, then the series a k
k

n

=
∑









0

 does

not have a limit.  

The "method" of the previous section is usually called the Comparison Test, while

that of this section is usually called the Ratio Test.
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Exercises

Which of the following series are convergent and which are divergent? Explain your

answers.

18.   
10

0

k

k

n

k !=
∑









19.   
3

5

2 1

0

k

k
k

n +

=
∑









20.  
3

10

2 1

0

k

k
k

n +

=
∑









21.   
3

5 14
1

k

k
k

n

k k( )+ +










=
∑

22.  
3 1

5

4

1

k

k
k

n k k( )+ +









=
∑

10.6  A Final Remark

The "tests" for convergence of series that we have seen so far all depended on the

series having positive terms.  We need to say a word about the situations in which this is

not necessarily the case.  First, if the terms of a series a k
k

n

=
∑









0

 alternate in sign, and if it is

true that | | | |a ak k+ ≤1    for all k , then lim
k

ka
→∞

= 0  is sufficient to insure convergence of the

series. This is not too hard to see—meditate on it for a while.

The second result is a bit harder to see, and we'll just put out the result as the word,

asking that you accept it on faith.  It says simply that if the series  | |ak
k

n

=
∑









0

 converges,

then so also does the series a k
k

n

=
∑









0

.  Thus, faced with an arbitrary series a k
k

n

=
∑









0

, we
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may unleash out arsenal of tests on the series | |ak
k

n

=
∑









0

.  If we find this one to be

convergent, then the original series is also convergent.  If, of course, this series turns out

not to be convergent, then we still do not know about the original series.


