Chapter Nineteen

Some Physics

19.1 Fluid M echanics
Suppose V(X, Y, z,t) isthevelocity a r =(X,Y,z) = xi +yj + zk of afluid flowing
smoothly through a region in space, and suppose r (X, Y, z,t) isthe density at r at timet. If

Sisan oriented surface, it is not hard to convince yourself that the flux integral
Qy v >ar
S
is the rate at which mass flows through the surface S. Now, if Sis a closed surface, then

the mass in the region B bounded by Sis, of course
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Therate at which this massis changing is smply

ﬂ AN\ \\\ﬂr
— a4V = qp_-dVv -
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Thisis the same as the rate at which massis flowing across Sinto B: - ¢y v>dr , where S
S

is given the outward pointing orientation. Thus,

dDdV = - gy vodr |
B ﬂt S

We now apply Gauss's Theorem and get

G dV = - gy vadr = gy KX v)av.
B ﬂt S B

Thus,

AN\ r | 0

Q.- *NXrv)dv.
s et @

Meditate on this result. The region B is any region, and so it must be true that the

integrand itself is everywhere O:
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1%—2+N><(rv)=0.

This is one of the fundamental equations of fluid dynamics. It is caled the equation of
continuity.
In case the fluid is incompressible, the continuity equation becomes quite simple.

Incompressible means simply that the density r is constant. Thus .ET_rt =0 and so we have

1%_2+Nx(rv):|§|x(rv):r|§|xv:0, or

N> =0.
Exercise
1. Consder a one dimensona flow in which the velocity of the fluid is given by

v = f(x), where f(x)>0. Suppose further that the density r of the fluid does not vary
with timet. Show that

r(x)=%,

where k is a constant.

19.2 Electrostatics
Suppose there is a point charge q fixed at the point s. Then the eectric field
E,(r) dueto qisgiven by
r-s
r-o

It is easy to verify, as we have done in a previous chapter, that this field, or function, is

E,(r) =ka

conservative, with a potential function

_kq
Ir-s]

Pq(r):

so that E, =NPq. Physicists do not like to be bothered with the minus signin F,, so they

define the electric potential V,to be - P, . Thus,
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|r-s|

V()=

and
E,(r) =-NV,(r).

We have already seen that the flux out of a closed surface Sis
0 if Sdoesnot enclosetheorigin
@E xS = | ) . .g
S 14pkg if Sdoesenclosetheorigin
Some meditation will convince you there is nothing special here about the origin; that is, if

the point chargeisat s, then

« i O if Sdoesnotencloses
@, 9S=| -
14pkg if Sdoesencloses

Next, suppose there are a finite number of point charges g, ats;,q, as,,...,and

g, ats,. Suppose E; isthe electric intengity due to ¢;. Then it should be clear that the

electric field due to these chargesis smply the sum

I’-SJ—

E(r)= E = ka q——>3 i |3 :

j—l

Also,

-—1I S i
E(r) =-NV(r).
Findly,
GF *dS = 4pk3 g
s

where the sum is over those charges enclosed by S.
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Things become more exciting if instead of point charges, we have a charge
distribution in space with charge density r . To find the electric field E(r)produced by
this distribution of charge in space, we need to integrate:

=) = @i (s) |)

But this appears to be a serious breach of decorum. We are integrating over everything,
and a s=r we have the dreaded O in the denominator. Thus what we see above is an
improper integral—that is, it is actually a limit of integrals. Specifically, we integrate not
over everything but over everything outside a spherical solid region of radius a centered at
r. We then look at the limit as a® 0of this integral. With the integra for the electric
field, this limit exists, and so there is no problem with O on the bottom of the integrand. In

the same way, we are safe in writing for the potential

sy T (9)

Everything works nicely so that we aso have
E(r) =-NV(r).
If Risasolid region bounded by a closed surface S, then we can also integrate to get
(= >dS = 4pk (py (S)av.
s R

The divergence of E is the troublesome item in extending matters to distributed

charge. If we smply try to calculate the divergence by dlvc‘ﬁguff dVv = quyliv(stuff)av,
U

then things go wrong because the improper integral of the divergence does not exist.
Gauss saves the day. Let R be any region and let S be the closed surface bounding R.
Then

QF *dS= N € dV .
S R
But from equation (*) we have

GBF *dS = 4pk Gy (9aV = G E aV .
S R R

Thisgivesus
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Quyekr dv = N *E dV , or
R R
QRN >E - pkr Jav .
R
But Risany region, and so it must be true that
N xE = 4pkr
fordlr.
Finally, remembering that E =- NV , we get
N>E =-NxNV) = 4pkr ;
N2V = -4pkr , or
2 2 2
TV + TV + TV
™ Iy 12
Thisisthe celebrated Poisson’ s Equation, ajustly famous partia differential equation, the

= - dpkr .

study of which is beyond the scope of this course.
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