Chapter Nineteen

Some Physics

19.1 Fluid Mechanics

Suppose $\mathbf{v}(x, y, z, t)$ is the velocity at $\mathbf{r} = (x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ of a fluid flowing smoothly through a region in space, and suppose $\mathbf{r}(x, y, z, t)$ is the density at \mathbf{r} at time t. If S is an oriented surface, it is not hard to convince yourself that the flux integral

$$\iint_{S} \mathbf{r} \mathbf{v} \cdot d\mathbf{r}$$

is the rate at which mass flows through the surface S. Now, if S is a closed surface, then the mass in the region B bounded by S is, of course

$$\iiint\limits_{R} r dV$$
.

The rate at which this mass is changing is simply

$$\frac{\partial}{\partial t} \iiint_{R} \mathbf{r} dV = \iiint_{R} \frac{\partial \mathbf{r}}{\partial t} dV.$$

This is the same as the rate at which mass is flowing across S into B: $-\iint_{S} \mathbf{r} \mathbf{v} \cdot d\mathbf{r}$, where S

is given the outward pointing orientation. Thus,

$$\iiint_{B} \frac{\partial \mathbf{r}}{\partial t} dV = -\iint_{S} \mathbf{r} \mathbf{v} \cdot d\mathbf{r} .$$

We now apply Gauss's Theorem and get

$$\iiint_{B} \frac{\partial \mathbf{r}}{\partial t} dV = -\iint_{S} \mathbf{r} \mathbf{v} \cdot d\mathbf{r} = \iiint_{B} -\nabla \cdot (\mathbf{r} \mathbf{v}) dV.$$

Thus,

$$\iiint_{B} \left(\frac{\partial \mathbf{r}}{\partial t} + \nabla \cdot (\mathbf{r} \mathbf{v}) \right) dV.$$

Meditate on this result. The region *B* is *any* region, and so it must be true that the integrand itself is everywhere 0:

$$\frac{\partial \mathbf{r}}{\partial t} + \nabla \cdot (\mathbf{r}\mathbf{v}) = 0$$
.

This is one of the fundamental equations of fluid dynamics. It is called the *equation of continuity*.

In case the fluid is incompressible, the continuity equation becomes quite simple. Incompressible means simply that the density r is constant. Thus $\frac{\partial r}{\partial t} = 0$ and so we have

$$\frac{\partial \mathbf{r}}{\partial t} + \nabla \cdot (\mathbf{r}\mathbf{v}) = \nabla \cdot (\mathbf{r}\mathbf{v}) = \mathbf{r}\nabla \cdot \mathbf{v} = 0, \text{ or }$$

$$\nabla \cdot \mathbf{v} = 0$$
.

Exercise

1. Consider a one dimensional flow in which the velocity of the fluid is given by $\mathbf{v} = f(x)$, where f(x) > 0. Suppose further that the density \mathbf{r} of the fluid does not vary with time t. Show that

$$\mathbf{r}(x) = \frac{k}{f(x)},$$

where k is a constant.

19.2 Electrostatics

Suppose there is a point charge q fixed at the point s. Then the electric field $\mathbf{E}_{q}(\mathbf{r})$ due to q is given by

$$\mathbf{E}_{q}(\mathbf{r}) = kq \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^{3}}.$$

It is easy to verify, as we have done in a previous chapter, that this field, or function, is conservative, with a potential function

$$P_q(\mathbf{r}) = \frac{-kq}{|\mathbf{r} - \mathbf{s}|};$$

so that $\mathbf{E}_q = \nabla P_q$. Physicists do not like to be bothered with the minus sign in P_q , so they define the electric potential V_q to be $-P_q$. Thus,

$$V_q(\mathbf{r}) = \frac{kq}{|\mathbf{r} - \mathbf{s}|},$$

and

$$\mathbf{E}_{q}(\mathbf{r}) = -\nabla V_{q}(\mathbf{r}) .$$

We have already seen that the flux out of a closed surface S is

$$\iint_{S} \mathbf{E}_{q} \cdot d\mathbf{S} = \begin{cases} 0 & \text{if } S \text{ does not enclose the origin} \\ 4\mathbf{p}kq & \text{if } S \text{ does enclose the origin} \end{cases}$$

Some meditation will convince you there is nothing special here about the origin; that is, if the point charge is at s, then

$$\iint_{S} \mathbf{E}_{q} \cdot d\mathbf{S} = \begin{cases} 0 & \text{if } S \text{ does not enclose } \mathbf{s} \\ 4\mathbf{p}kq & \text{if } S \text{ does enclose } \mathbf{s} \end{cases}$$

Next, suppose there are a finite number of point charges q_1 at \mathbf{s}_1, q_2 at \mathbf{s}_2, \ldots , and q_n at \mathbf{s}_n . Suppose \mathbf{E}_j is the electric intensity due to q_j . Then it should be clear that the electric field due to these charges is simply the sum

$$\mathbf{E}(\mathbf{r}) = \sum_{j=1}^{n} \mathbf{E}_{j} = k \sum_{j=1}^{n} q_{j} \frac{\mathbf{r} - \mathbf{s}_{j}}{|\mathbf{r} - \mathbf{s}_{j}|^{3}}.$$

Also,

$$V(\mathbf{r}) = k \sum_{j=1}^{n} \frac{q_j}{|\mathbf{r} - \mathbf{s}_j|};$$
 and

$$\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r})$$
.

Finally,

$$\iint_{S} \mathbf{E} \cdot d\mathbf{S} = 4\mathbf{p}k \sum_{j} q_{j}$$

where the sum is over those charges enclosed by S.

Things become more exciting if instead of point charges, we have a charge distribution in space with charge density r. To find the electric field $\mathbf{E}(\mathbf{r})$ produced by this distribution of charge in space, we need to integrate:

$$\mathbf{E}(\mathbf{r}) = \iiint_{U} k\mathbf{r}(\mathbf{s}) \frac{(\mathbf{r} - \mathbf{s})}{|\mathbf{r} - \mathbf{s}|^{3}} dV_{s}.$$

But this appears to be a serious breach of decorum. We are integrating over everything, and at $\mathbf{s} = \mathbf{r}$ we have the dreaded 0 in the denominator. Thus what we see above is an *improper* integral—that is, it is actually a limit of integrals. Specifically, we integrate not over everything but over everything outside a spherical solid region of radius a centered at \mathbf{r} . We then look at the limit as $a \to 0$ of this integral. With the integral for the electric field, this limit exists, and so there is no problem with 0 on the bottom of the integrand. In the same way, we are safe in writing for the potential

$$V(\mathbf{r}) = k \iiint_{U} \frac{\mathbf{r}(\mathbf{s})}{|\mathbf{r} - \mathbf{s}|} dV_{s}.$$

Everything works nicely so that we also have

$$\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r})$$
.

If R is a solid region bounded by a closed surface S, then we can also integrate to get

(*)
$$\iint_{S} \mathbf{E} \cdot d\mathbf{S} = 4pk \iiint_{R} \mathbf{r}(\mathbf{s}) dV.$$

The divergence of \mathbf{E} is the troublesome item in extending matters to distributed charge. If we simply try to calculate the divergence by $div \iiint_U \operatorname{stuff} dV = \iiint_U div(\operatorname{stuff}) dV$,

then things go wrong because the improper integral of the divergence does not exist. Gauss saves the day. Let R be any region and let S be the closed surface bounding R. Then

$$\iint_{S} \mathbf{E} \cdot d\mathbf{S} = \iiint_{R} \nabla \cdot \mathbf{E} \, dV \ .$$

But from equation (*) we have

$$\iint_{S} \mathbf{E} \cdot d\mathbf{S} = 4\mathbf{p}k \iiint_{R} \mathbf{r}(\mathbf{s}) dV = \iiint_{R} \nabla \cdot \mathbf{E} \, dV.$$

This gives us

$$\iiint_{R} 4\mathbf{p}k\mathbf{r}dV = \iiint_{R} \nabla \cdot \mathbf{E} \, dV \text{ , or}$$

$$\iiint_{R} (\nabla \cdot \mathbf{E} - 4\mathbf{p}k\mathbf{r}) dV .$$

But *R* is *any* region, and so it must be true that

$$\nabla \cdot \mathbf{E} = 4\mathbf{p}k\mathbf{r}$$

for all **r**.

Finally, remembering that $\mathbf{E} = -\nabla V$, we get

$$\nabla \cdot \mathbf{E} = -\nabla \cdot (\nabla V) = 4\mathbf{p}k\mathbf{r};$$

$$\nabla^2 V = -4pk\mathbf{r}$$
, or

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -4pkr.$$

This is the celebrated *Poisson's Equation*, a justly famous partial differential equation, the study of which is beyond the scope of this course.

19.5