Chapter Five

More Dimensions

5.1 The Space $\boldsymbol{R}^{\boldsymbol{n}}$

We are now prepared to move on to spaces of dimension greater than three. These spaces are a straightforward generalization of our Euclidean space of three dimensions. Let n be a positive integer. The \boldsymbol{n}-dimensional Euclidean space \boldsymbol{R}^{n} is simply the set of all ordered n-tuples of real numbers $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Thus $\boldsymbol{R}^{\boldsymbol{I}}$ is simply the real numbers, \boldsymbol{R}^{2} is the plane, and \boldsymbol{R}^{3} is Euclidean three-space. These ordered n-tuples are called points, or vectors. This definition does not contradict our previous definition of a vector in case $n=3$ in that we identified each vector with an ordered triple (x_{1}, x_{2}, x_{3}) and spoke of the triple as being a vector.

We now define various arithmetic operations on \boldsymbol{R}^{n} in the obvious way. If we have vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in $\boldsymbol{R}^{\boldsymbol{n}}$, the sum $\boldsymbol{x}+\boldsymbol{y}$ is defined by

$$
\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right),
$$

and multiplication of the vector \boldsymbol{x} by a scalar a is defined by

$$
a \boldsymbol{x}=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right) .
$$

It is easy to verify that $a(\boldsymbol{x}+\boldsymbol{y})=a \boldsymbol{x}+a \boldsymbol{y}$ and $(a+b) \boldsymbol{x}=a \boldsymbol{x}+b \boldsymbol{x}$.
Again we see that these definitions are entirely consistent with what we have done in dimensions 1, 2, and 3-there is nothing to unlearn. Continuing, we define the length, or norm of a vector \boldsymbol{x} in the obvious manner

$$
|\boldsymbol{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}} .
$$

The scalar product of \boldsymbol{x} and \boldsymbol{y} is

$$
\boldsymbol{x} \cdot \boldsymbol{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

It is again easy to verify the nice properties:

$$
\begin{gathered}
|\boldsymbol{x}|^{2}=\boldsymbol{x} \cdot \boldsymbol{x} \geq 0, \\
|a \boldsymbol{x}|=|a \| \boldsymbol{x}|, \\
\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}, \\
\boldsymbol{x} \cdot(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \cdot \boldsymbol{y}+\boldsymbol{x} \cdot \boldsymbol{z}, \text { and } \\
(a \boldsymbol{x}) \cdot \boldsymbol{y}=a(\boldsymbol{x} \cdot \boldsymbol{y}) .
\end{gathered}
$$

The geometric language of the three dimensional setting is retained in higher dimensions; thus we speak of the "length" of an n-tuple of numbers. In fact, we also speak of $d(\boldsymbol{x}, \boldsymbol{y})=|\boldsymbol{x}-\boldsymbol{y}|$ as the distance between \boldsymbol{x} and \boldsymbol{y}. We can, of course, no longer rely on our vast knowledge of Euclidean geometry in our reasoning about \boldsymbol{R}^{n} when $n>3$. Thus for $n \leq 3$, the fact that $|\boldsymbol{x}+\boldsymbol{y}| \leq|\boldsymbol{x}|+|\boldsymbol{y}|$ for any vectors \boldsymbol{x} and \boldsymbol{y} was a simple consequence of the fact that the sum of the lengths of two sides of a triangle is at least as big as the length of the third side. This inequality remains true in higher dimensions, and, in fact, is called the triangle inequality, but requires an essentially algebraic proof. Let's see if we can prove it.

Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then if a is a scalar, we have

$$
|a x+y|^{2}=(a x+y) \cdot(a x+y) \geq 0 .
$$

Thus,

$$
(a x+y) \cdot(a x+y)=a^{2} \boldsymbol{x} \cdot \boldsymbol{x}+2 a x \cdot \boldsymbol{y}+\boldsymbol{y} \cdot \boldsymbol{y} \geq 0
$$

This is a quadratic function in a and is never negative; it must therefore be true that

$$
\begin{gathered}
4(\boldsymbol{x} \cdot \boldsymbol{y})^{2}-4(\boldsymbol{x} \cdot \boldsymbol{x})(\boldsymbol{y} \cdot \boldsymbol{y}) \leq 0, \text { or } \\
|\boldsymbol{x} \cdot \boldsymbol{y}| \leq|x||y|
\end{gathered}
$$

This last inequality is the celebrated Cauchy-Schwarz-Buniakowsky inequality. It is exactly the ingredient we need to prove the triangle inequality.

$$
|x+y|^{2}=(x+y) \cdot(x+y)=x \cdot x+2 x \cdot y+y \cdot y
$$

Applying the $\boldsymbol{C} \boldsymbol{-} \boldsymbol{S} \boldsymbol{-} \boldsymbol{B}$ inequality, we have

$$
\begin{gathered}
|x+y|^{2} \leq|x|^{2}+2|x \| y|+|y|^{2}=(|x|+|y|)^{2} \text {, or } \\
\qquad|x+y| \leq|x|+|y| .
\end{gathered}
$$

Corresponding to the coordinate vectors $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k}, the coordinate vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}$ are defined in $\boldsymbol{R}^{\boldsymbol{n}}$ by

$$
\begin{aligned}
& \boldsymbol{e}_{1}=(1,0,0,0, \ldots, 0) \\
& \boldsymbol{e}_{2}=(0,1,0,, \ldots, 0) \\
& \boldsymbol{e}_{3}=(0,0,1,0, \ldots, 0), \\
& \vdots \\
& \boldsymbol{e}_{n}=(0,0,0, \ldots, 0,1)
\end{aligned}
$$

Thus each vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ may be written in terms of these coordinate vectors:

$$
\boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{e}_{i} .
$$

Exercises

1. Let \boldsymbol{x} and \boldsymbol{y} be two vectors in \boldsymbol{R}^{n}. Prove that $|\boldsymbol{x}+\boldsymbol{y}|^{2}=|\boldsymbol{x}|^{2}+|\boldsymbol{y}|^{2}$ if and only if $\boldsymbol{x} \cdot \boldsymbol{y}=0$. (Adopting more geometric language from three space, we say that \boldsymbol{x} and \boldsymbol{y} are perpendicular or orthogonal if $\boldsymbol{x} \cdot \boldsymbol{y}=0$.)
2. Let \boldsymbol{x} and \boldsymbol{y} be two vectors in $\boldsymbol{R}^{\boldsymbol{n}}$. Prove
a) $|x+y|^{2}-|x-y|^{2}=4 x \cdot y$.
b) $|x+y|^{2}+|x-y|^{2}=2\left[|x|^{2}+|y|^{2}\right]$.
3. Let \boldsymbol{x} and \boldsymbol{y} be two vectors in $\boldsymbol{R}^{\boldsymbol{n}}$. Prove that $||\boldsymbol{x}|-|\boldsymbol{y}|| \leq|x|+|\boldsymbol{y}|$.
4. Let $P \subset \boldsymbol{R}^{4}$ be the set of all vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that

$$
3 x_{1}+5 x_{2}-2 x_{3}+x_{4}=15 .
$$

Find vectors \boldsymbol{n} and \boldsymbol{a} such that $P=\left\{\boldsymbol{x} \in \boldsymbol{R}^{4}: \boldsymbol{n} \cdot(\boldsymbol{x}-\boldsymbol{a})=0\right\}$.
5. Let \boldsymbol{n} and \boldsymbol{a} be vectors in $\boldsymbol{R}^{\boldsymbol{n}}$, and let $P=\left\{\boldsymbol{x} \in \boldsymbol{R}^{\boldsymbol{n}}: \boldsymbol{n} \cdot(\boldsymbol{x}-\boldsymbol{a})=0\right.$.
a)Find an equation in x_{1}, x_{2}, \ldots, and x_{n} such that $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P$ if and only if the coordinates of \boldsymbol{x} satisfy the equation.
b)Describe the set P be in case $n=3$. Describe it in case $n=2$.
[The set P is called a hyperplane through a.]

5.2 Functions

We now consider functions $F: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{p}$. Note that when $n=p=1$, we have the usual grammar school calculus functions, and when $n=1$ and $p=2$ or 3 , we have the vector valued functions of the previous chapter. Note also that except for very special circumstances, graphs of functions will not play a big role in our understanding. The set of points $\left(\boldsymbol{x}, F(\boldsymbol{x})\right.$) resides in $\boldsymbol{R}^{\boldsymbol{n}+\boldsymbol{p}}$ since $\boldsymbol{x} \in \boldsymbol{R}^{\boldsymbol{n}}$ and $F(\boldsymbol{x}) \in \boldsymbol{R}^{p}$; this is difficult to "see" unless $n+p \leq 3$.

We begin with a very special kind of functions, the so-called linear functions. A function $F: \boldsymbol{R}^{\boldsymbol{n}} \rightarrow \boldsymbol{R}^{p}$ is said to be a linear function if
i) $F(\boldsymbol{x}+\boldsymbol{y})=F(\boldsymbol{x})+F(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{R}^{n}$, and
ii) $F(a \boldsymbol{x})=a F(\boldsymbol{x})$ for all scalars a and $\boldsymbol{x} \in \boldsymbol{R}^{n}$.

Example

Let $n=p=1$, and define F by $F(x)=3 x$. Then

$$
\begin{gathered}
F(x+y)=3(x+y)=3 x+3 y=F(x)+F(y) \text { and } \\
F(a x)=3(a x)=a 3 x=a F(x) .
\end{gathered}
$$

This F is a linear function.

Another Example

Let $\boldsymbol{F}: \boldsymbol{R} \rightarrow \boldsymbol{R}^{3}$ be defined by $\boldsymbol{F}(t)=t \boldsymbol{i}+2 t \boldsymbol{j}-7 t \boldsymbol{k}=(t, 2 t,-7 t)$. Then

$$
\begin{aligned}
\boldsymbol{F}(t+s) & =(t+s) \boldsymbol{i}+2(t+s) \boldsymbol{j}-7(t+s) \boldsymbol{k} \\
& =[\boldsymbol{i}+2 \boldsymbol{i}-7 t \boldsymbol{k}]+[s \boldsymbol{i}+2 s \boldsymbol{j}-7 s \boldsymbol{k}] \\
& =\boldsymbol{F}(t)+\boldsymbol{F}(s)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\boldsymbol{F}(a t) & =a t \boldsymbol{i}+2 a t \boldsymbol{j}-7 a t \boldsymbol{k} \\
& =a[t \boldsymbol{i}+2 t \boldsymbol{j}-7 t \boldsymbol{k}]=a \boldsymbol{F}(t)
\end{aligned}
$$

We see yet another linear function.

One More Example

Let $F: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{4}$ be defined by

$$
F\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(2 x_{1}-x_{2}+3 x_{3}, x_{1}+4 x_{2}-5 x_{3},-x_{1}+2 x_{2}+x_{3}, x_{1}+x_{3}\right) .
$$

It is easy to verify that F is indeed a linear function.
A translation is a function $T: \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{p}$ such that $T(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{x}$, where \boldsymbol{a} is a fixed vector in $\boldsymbol{R}^{\boldsymbol{n}}$. A function that is the composition of a linear function followed by a translation is called an affine function. An affine function F thus has the form $F(\boldsymbol{x})=\boldsymbol{a}+L(\boldsymbol{x})$, where L is a linear function.

Example

Let $F: \boldsymbol{R} \rightarrow \boldsymbol{R}^{3}$ be defined by $F(t)=(2+t, 4 t-3, t)$. Then F is affine. Let $\boldsymbol{a}=(2,4,0)$ and $L(t)=(t, 4 t, t)$. Clearly $F(t)=\boldsymbol{a}+L(t)$.

Exercises

6. Which of the following functions are linear? Explain your answers.
a) $f(x)=-7 x$
b) $g(x)=2 x-5$
c) $F\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, x_{1}-x_{2}, 3 x_{1}, 5 x_{1}-2 x_{2}, \mathrm{x}_{1}\right)$
d) $G\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{3}$
e) $F(t)=(2 t, t, 0,-2 t)$
f) $h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,0)$
g) $f(x)=\sin x$
7. a)Describe the graph of a linear function from \boldsymbol{R} to \boldsymbol{R}.
b)Describe the graph of an affine function from \boldsymbol{R} to \boldsymbol{R}.
