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Chapter Nine

The Taylor Polynomial

9.1 Introduction  

Let f be a function and let F be a collection of "nice" functions.  The approximation

problem is simply to find a function g ∈F that is "close" to the given function f .  There are

two issues immediately.  How is the collection F selected, and what do we mean by

"close"?  The answers depend on the problem at hand.  Presumably we want to do

something to f that is difficult or impossible (This might be something as simple as finding

f x( ) for some x.).  The collection F would thus consist of functions to which it is easy to

do that which we wish to do to f .  Our measure of how close one function is to another

would try to reflect the closeness of the results of our operations.  Now, what are we

talking about here. Suppose, for example, we wish to find  f x( ) .  Our collection F of

functions should include functions that are easy to evaluate at x , and two function would

be "close" simply if there values are close.  We might, for instance, want to evaluate sin x

for all x is some interval I. The collection F could be a collection of second degree

polynomials.  The approximation problem is then to find elements of F that make the

"distance" max{|sin ( )|: }x p x x I− ∈ as small as possible.  Similarly, we might want to find

the integral of some function f over an interval I .  Here we would want F to consist of

functions easily integrated and measure the distance between functions by the difference of

their integrals over I .  In the previous chapter, we found the "best" straight line

approximation to a set of data points.  In that case, the collection F consisted of all

nonvertical straight lines, and we measured the distance between functions by the sum of

the squares of their differences on a specified set of points { , , , }x x x n1 2 K .  You can

imagine many other examples.

9.2 The Taylor Polynomial

We look first at a simple but useful problem:  Given a nice function f : D R R⊂ →  , a

point a in the interior of the domain D , and an integer n , find a polynomial p of degree

≤ n  such that
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We solve the problem by the Behold Method.  Simply verify that
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does the job!  It is also fairly easy to see that this polynomial is the only polynomial of

degree ≤ n  that does the job.   Suppose q is also a polynomial with degree g ≤ n  such that
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and consider the function r p q= − .  Note that r is also a polynomial of degree ≤ n .  But

r a r a r a r an( ) '( ) ' '( ) ( )( )= = = = =K 0 .

Or, in other words, r has a zero of order n + 1, and the only way this can happen is if

r x( ) ≡ 0  for all x .  That is,  p x q x( ) ( )≡  identically.

Example

Let f x x( ) sin=  and let a = 0 .  Let's find the Taylor polynomial for a few different

values of n.  For n = 1, we have simply  p x f a f a x a x x1 0 0( ) ( ) '( )( ) sin cos ( )= + − = + = .

Note that for n = 2, we have p x x x x2
20 0 0( ) sin cos ( ) sin ( )= + − = , also.  Let's take a look

at the next Taylor polynomial.  Here p x x
x

3

3

6
( ) = − .  Let's draw some pictures; we'll look

at the graph of p3  and f . We shall use Maple.
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What we see is that the Taylor polynomial looks like a pretty good approximation as long

as we don't get too far away from a = 0.  Let us continue.  Convince yourself that p p4 3= ,

and p x x
x x

5

3 5

6 120
( ) = − + .  Another picture:
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Exercises

1 . Find the Taylor polynomial of degree n for f x e x( ) =  at a = 0.

2 . Find the Taylor polynomial of degree n for f x x( ) = 3  at a = 1.

3 . Find the Taylor polynomial of degree 3 for f x x( ) log=  at a = 1.

4 . Find the Taylor polynomial of degree n for f x x( ) sin=  at a = 0.

5 . Find the Taylor polynomial of degree 3 for f x x( ) =  at a = 4.

9.3  Error

Let's see how close the Taylor polynomial is to the function f .  To do this, suppose p is

the Taylor polynomial of degree ≤ n  for the function f  at a , and consider the function
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(We assume x a≠ .) Note that g a g x( ) ( )= = 0 .  Now, from the Mean Value Theorem (or

Rolle's Theorem, or whatever.) we know that g' ( )ξ 1 0=  for some ξ 1  between a and x .

But note also that g a f a p a
n a a
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from the Mean Value Theorem that the derivative of g' is zero at some ξ 2  between a  and

ξ 1 .  Also, g a f a p a
n n a a
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.  Once again, from

the celebrated Mean Value Theorem, we conclude that g' ' ' ( )ξ 3 0=  for some ξ 3  between a

and ξ 2 .  Continuing in this fashion, we are finally able to conclude that g n( ) ( )+ =1 0ξ  for

some ξ .  Let's see what this looks like.
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and so g n( ) ( )+ =1 0ξ  becomes

f
n
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(Remember, p  is a polynomial of degree ≤ n , and so p tn( ) ( )+ ≡1 0 .  From this we obtain an

expression for the difference between f and the Taylor polynomial g :
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Example

Remember when in 7th grade physics class, Mr. Crews replaced the sine of a "small"

angle θ by θ itself ?  He assured us that for small angles this was just fine.  Well, what was

going on here? Let's see if our new-found knowledge of Taylor polynomials will help.

Observe that p( )θ θ=  is simply the Taylor polynomial of degree ≤ 2  for f ( ) sinθ θ=  at

a = 0 . Using the result just derived, we have that

sin
sinθ θ ξ θ− = −
6

3  .

Now, we don't know what ξ  is, but we do know that |sin }ξ ≤ 1; thus

|sin |θ θ θ− ≤
3

6
,

and we have a precise estimate of the error incurred by substituting θ for sinθ .  Suppose,

for example, that θ = 10 o ; then what?  Well, θ π π= =10

360
2

18
. Then the error we get when

we use 
π
18

  instead of sin
π
18

 is estimated by

sin .
π π θ
18 18

1

6 18
0 008862
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 ≤ .

Now we know exactly what "pretty close" means. For 10 degrees, I guess that's "not too

bad."

Exercises
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6 . a)Find the Taylor polynomial of degree ≤ 2  for f x e x( ) =  at a =0.

b)Use the result of part a) to find an approximation for e .

c)Find as small an upper bound as you can for the difference between your 

approximation found in part b) and  e .

7 . Use the Taylor polynomial found in Exercise 3 to approximate log(. )11  and find an 

upper bound for the magnitude of the difference between your approximation and 

log(. )11 .

8 . For what values of x can you replace sin x by x
x−

3

6
 with an error of magnitude no 

greater than 3 10 4× − ?

9 . Calculate e with an error of less than 10-6 .


