Chapter Ten

Poles, Residues, and All That

10.1. Residues. A point z_{0} is a singular point of a function f if f not analytic at z_{0}, but is analytic at some point of each neighborhood of z_{0}. A singular point z_{0} of f is said to be isolated if there is a neighborhood of z_{0} which contains no singular points of f save z_{0}. In other words, f is analytic on some region $0<\left|z-z_{0}\right|<\varepsilon$.

Examples

The function f given by

$$
f(z)=\frac{1}{z\left(z^{2}+4\right)}
$$

has isolated singular points at $z=0, z=2 i$, and $z=-2 i$.

Every point on the negative real axis and the origin is a singular point of $\log z$, but there are no isolated singular points.

Suppose now that z_{0} is an isolated singular point of f. Then there is a Laurent series

$$
f(z)=\sum_{j=-\infty}^{\infty} c_{j}\left(z-z_{0}\right)^{j}
$$

valid for $0<\left|z-z_{0}\right|<R$, for some positive R. The coefficient c_{-1} of $\left(z-z_{0}\right)^{-1}$ is called the residue of f at z_{0}, and is frequently written

$$
\operatorname{Res}_{z=z_{0}} f
$$

Now, why do we care enough about c_{-1} to give it a special name? Well, observe that if C is any positively oriented simple closed curve in $0<\left|z-z_{0}\right|<R$ and which contains z_{0} inside, then

$$
c_{-1}=\frac{1}{2 \pi i} \int_{C} f(z) d z
$$

This provides the key to evaluating many complex integrals.

Example

We shall evaluate the integral

$$
\int_{C} e^{1 / z} d z
$$

where C is the circle $|z|=1$ with the usual positive orientation. Observe that the integrand has an isolated singularity at $z=0$. We know then that the value of the integral is simply $2 \pi i$ times the residue of $e^{1 / z}$ at 0 . Let's find the Laurent series about 0 . We already know that

$$
e^{z}=\sum_{j=0}^{\infty} \frac{1}{j!} z^{j}
$$

for all z. Thus,

$$
e^{1 / z}=\sum_{j=0}^{\infty} \frac{1}{j!} z^{-j}=1+\frac{1}{z}+\frac{1}{2!} \frac{1}{z^{2}}+\ldots
$$

The residue $c_{-1}=1$, and so the value of the integral is simply $2 \pi i$.

Now suppose we have a function f which is analytic everywhere except for isolated singularities, and let C be a simple closed curve (positively oriented) on which f is analytic. Then there will be only a finite number of singularities of f inside C (why?). Call them z_{1}, z_{2}, \ldots, z_{n}. For each $k=1,2, \ldots, n$, let C_{k} be a positively oriented circle centered at z_{k} and with radius small enough to insure that it is inside C and has no other singular points inside it.

Then,

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z+\ldots+\int_{C_{n}} f(z) d z \\
& =2 \pi i \operatorname{Res}_{z=z_{1}} f+2 \pi i \operatorname{Res}_{z=z_{2}} f+\ldots+2 \pi i{\underset{z=z_{n}}{\operatorname{Res}} f}=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f .
\end{aligned}
$$

This is the celebrated Residue Theorem. It says that the integral of f is simply $2 \pi i$ times the sum of the residues at the singular points enclosed by the contour C.

Exercises

Evaluate the integrals. In each case, C is the positively oriented circle $|z|=2$.

1. $\int_{C} e^{1 / z^{2}} d z$.
2. $\int_{C} \sin \left(\frac{1}{z}\right) d z$.
3. $\int_{C} \cos \left(\frac{1}{z}\right) d z$.
4. $\int_{C} \frac{1}{z} \sin \left(\frac{1}{z}\right) d z$.
5. $\int_{C} \frac{1}{z} \cos \left(\frac{1}{z}\right) d z$.
10.2. Poles and other singularities. In order for the Residue Theorem to be of much help in evaluating integrals, there needs to be some better way of computing the residue-finding the Laurent expansion about each isolated singular point is a chore. We shall now see that in the case of a special but commonly occurring type of singularity the residue is easy to find. Suppose z_{0} is an isolated singularity of f and suppose that the Laurent series of f at z_{0} contains only a finite number of terms involving negative powers of $z-z_{0}$. Thus,

$$
f(z)=\frac{c_{-n}}{\left(z-z_{0}\right)^{n}}+\frac{c_{-n+1}}{\left(z-z_{0}\right)^{n-1}}+\ldots+\frac{c_{-1}}{\left(z-z_{0}\right)}+c_{0}+c_{1}\left(z-z_{0}\right)+\ldots
$$

Multiply this expression by $\left(z-z_{0}\right)^{n}$:

$$
\phi(z)=\left(z-z_{0}\right)^{n} f(z)=c_{-n}+c_{-n+1}\left(z-z_{0}\right)+\ldots+c_{-1}\left(z-z_{0}\right)^{n-1}+\ldots
$$

What we see is the Taylor series at z_{0} for the function $\phi(z)=\left(z-z_{0}\right)^{n} f(z)$. The coefficient of $\left(z-z_{0}\right)^{n-1}$ is what we seek, and we know that this is

$$
\frac{\phi^{(n-1)}\left(z_{0}\right)}{(n-1)!}
$$

The sought after residue c_{-1} is thus

$$
c_{-1}=\operatorname{Res}_{z=z_{0}} f=\frac{\phi^{(n-1)}\left(z_{0}\right)}{(n-1)!},
$$

where $\phi(z)=\left(z-z_{0}\right)^{n} f(z)$.

Example

We shall find all the residues of the function

$$
f(z)=\frac{e^{z}}{z^{2}\left(z^{2}+1\right)}
$$

First, observe that f has isolated singularities at 0 , and $\pm i$. Let's see about the residue at 0 . Here we have

$$
\phi(z)=z^{2} f(z)=\frac{e^{z}}{\left(z^{2}+1\right)} .
$$

The residue is simply $\phi^{\prime}(0)$:

$$
\phi^{\prime}(z)=\frac{\left(z^{2}+1\right) e^{z}-2 z e^{z}}{\left(z^{2}+1\right)^{2}} .
$$

Hence,

$$
\operatorname{Res}_{z=0} f=\phi^{\prime}(0)=1 .
$$

Next, let's see what we have at $z=i$:

$$
\phi(z)=(z-i) f(z)=\frac{e^{z}}{z^{2}(z+i)},
$$

and so

$$
\operatorname{Res}_{z=i} f(z)=\phi(i)=-\frac{e^{i}}{2 i} .
$$

In the same way, we see that

$$
\operatorname{Res}_{z=-i} f=\frac{e^{-i}}{2 i} .
$$

Let's find the integral $\int_{C} \frac{e^{z}}{z^{2}\left(z^{2}+1\right)} d z$, where C is the contour pictured:

This is now easy. The contour is positive oriented and encloses two singularities of $f ; v i z, i$ and -i. Hence,

$$
\begin{aligned}
\int_{C} \frac{e^{z}}{z^{2}\left(z^{2}+1\right)} d z & =2 \pi i\left[\operatorname{Res}_{z=i} f+\underset{z=-i}{\operatorname{Res} f}\right] \\
& =2 \pi i\left[-\frac{e^{i}}{2 i}+\frac{e^{-i}}{2 i}\right] \\
& =-2 \pi i \sin 1
\end{aligned}
$$

Miraculously easy!

There is some jargon that goes with all this. An isolated singular point z_{0} of f such that the Laurent series at z_{0} includes only a finite number of terms involving negative powers of $z-z_{0}$ is called a pole. Thus, if z_{0} is a pole, there is an integer n so that $\phi(z)=\left(z-z_{0}\right)^{n} f(z)$ is analytic at z_{0}, and $f\left(z_{0}\right) \neq 0$. The number n is called the order of the pole. Thus, in the preceding example, 0 is a pole of order 2 , while i and $-i$ are poles of order 1. (A pole of order 1 is frequently called a simple pole.) We must hedge just a bit here. If z_{0} is an isolated singularity of f and there are no Laurent series terms involving negative powers of $z-z_{0}$, then we say z_{0} is a removable singularity.

Example

Let

$$
f(z)=\frac{\sin z}{z} ;
$$

then the singularity $z=0$ is a removable singularity:

$$
\begin{aligned}
f(z) & =\frac{1}{z} \sin z=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots\right) \\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\ldots
\end{aligned}
$$

and we see that in some sense f is "really" analytic at $z=0$ if we would just define it to be the right thing there.

A singularity that is neither a pole or removable is called an essential singularity.

Let's look at one more labor-saving trick-or technique, if you prefer. Suppose f is a function:

$$
f(z)=\frac{p(z)}{q(z)}
$$

where p and q are analytic at z_{0}, and we have $q\left(z_{0}\right)=0$, while $q^{\prime}\left(z_{0}\right) \neq 0$, and $p\left(z_{0}\right) \neq 0$. Then

$$
f(z)=\frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)+p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\ldots}{q^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2} \ldots},
$$

and so

$$
\phi(z)=\left(z-z_{0}\right) f(z)=\frac{p\left(z_{0}\right)+p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\ldots}{q^{\prime}\left(z_{0}\right)+\frac{q^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)+\ldots}
$$

Thus z_{0} is a simple pole and

$$
\operatorname{Res}_{z=z_{0}} f=\phi\left(z_{0}\right)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)} .
$$

Example

Find the integral

$$
\int_{C} \frac{\cos z}{e^{z}-1} d z
$$

where C is the rectangle with sides $x= \pm 1, y=-\pi$, and $y=3 \pi$.
The singularities of the integrand are all the places at which $e^{z}=1$, or in other words, the points $z=0, \pm 2 \pi i, \pm 4 \pi i, \ldots$. The singularities enclosed by C are 0 and $2 \pi i$. Thus,

$$
\int_{C} \frac{\cos z}{e^{z}-1} d z=2 \pi i\left[\operatorname{Res}_{z=0} f+\operatorname{Res}_{z=2 \pi i} f\right]
$$

where

$$
f(z)=\frac{\cos z}{e^{z}-1} .
$$

Observe this is precisely the situation just discussed: $f(z)=\frac{p(z)}{q(z)}$, where p and q are analytic, etc.,etc. Now,

$$
\frac{p(z)}{q^{\prime}(z)}=\frac{\cos z}{e^{z}} .
$$

Thus,

$$
\begin{gathered}
\operatorname{Res}_{z=0} f=\frac{\cos 0}{1}=1, \text { and } \\
\operatorname{Res}_{z=2 \pi i} f=\frac{\cos 2 \pi i}{e^{2 \pi i}}=\frac{e^{-2 \pi}+e^{2 \pi}}{2}=\cosh 2 \pi
\end{gathered}
$$

Finally,

$$
\begin{aligned}
\int_{C} \frac{\cos z}{e^{z}-1} d z & =2 \pi i\left[\operatorname{Res}_{z=0} f+\underset{z=2 \pi i}{\operatorname{Res}} f\right] \\
& =2 \pi i(1+\cosh 2 \pi)
\end{aligned}
$$

Exercises

6. Suppose f has an isolated singularity at z_{0}. Then, of course, the derivative f^{\prime} also has an isolated singularity at z_{0}. Find the residue $\underset{z=z_{0}}{\operatorname{Res}} f^{\prime}$.
7. Given an example of a function f with a simple pole at z_{0} such that $\underset{z=z_{0}}{\operatorname{Res}} f=0$, or explain carefully why there is no such function.
8. Given an example of a function f with a pole of order 2 at z_{0} such that $\operatorname{Res}_{z=z_{0}} f=0$, or explain carefully why there is no such function.
9. Suppose g is analytic and has a zero of order n at z_{0} (That is, $g(z)=\left(z-z_{0}\right)^{n} h(z)$, where $h\left(z_{0}\right) \neq 0$.). Show that the function f given by

$$
f(z)=\frac{1}{g(z)}
$$

has a pole of order n at z_{0}. What is $\operatorname{Res}_{z=z_{0}} f$?
10. Suppose g is analytic and has a zero of order n at z_{0}. Show that the function f given by

$$
f(z)=\frac{g^{\prime}(z)}{g(z)}
$$

has a simple pole at z_{0}, and $\underset{z=z_{0}}{\operatorname{Res}} f=n$.
11. Find

$$
\int_{C} \frac{\cos z}{z^{2}-4} d z
$$

where C is the positively oriented circle $|z|=6$.
12. Find

$$
\int_{C} \tan z d z
$$

where C is the positively oriented circle $|z|=2 \pi$.
13. Find

$$
\int_{C} \frac{1}{z^{2}+z+1} d z
$$

where C is the positively oriented circle $|z|=10$.

