
Chapter Ten

Poles, Residues, and All That

10.1. Residues. A point z0 is a singular point of a function f if f not analytic at z0, but is
analytic at some point of each neighborhood of z0. A singular point z0 of f is said to be
isolated if there is a neighborhood of z0 which contains no singular points of f save z0. In
other words, f is analytic on some region 0  |z  z0 |  .

Examples

The function f given by

fz  1
zz2  4

has isolated singular points at z  0, z  2i, and z  2i.

Every point on the negative real axis and the origin is a singular point of Log z , but there
are no isolated singular points.

Suppose now that z0 is an isolated singular point of f . Then there is a Laurent series

fz 
j



cjz  z0 j

valid for 0  |z  z0 |  R, for some positive R. The coefficient c1 of z  z01 is called the
residue of f at z0, and is frequently written

zz0
Res f.

Now, why do we care enough about c1to give it a special name? Well, observe that if C is
any positively oriented simple closed curve in 0  |z  z0 |  R and which contains z0
inside, then

c1  1
2i 

C

fzdz.
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This provides the key to evaluating many complex integrals.

Example

We shall evaluate the integral


C

e1/zdz

where C is the circle |z|  1 with the usual positive orientation. Observe that the integrand
has an isolated singularity at z  0. We know then that the value of the integral is simply
2i times the residue of e1/z at 0. Let’s find the Laurent series about 0. We already know
that

ez 
j0


1
j! z

j

for all z . Thus,

e1/z 
j0


1
j! z

j  1  1z  1
2!
1
z2



The residue c1  1, and so the value of the integral is simply 2i.

Now suppose we have a function f which is analytic everywhere except for isolated
singularities, and let C be a simple closed curve (positively oriented) on which f is analytic.
Then there will be only a finite number of singularities of f inside C (why?). Call them z1,
z2,  , zn. For each k  1,2, ,n, let Ck be a positively oriented circle centered at zk and
with radius small enough to insure that it is inside C and has no other singular points inside
it.
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Then,


C

fzdz  
C1

fzdz  
C2

fzdz  
Cn

fzdz

 2i
zz1
Res f  2i

zz2
Res f 2i

zzn
Res f

 2i
k1

n

zzk
Res f.

This is the celebrated Residue Theorem. It says that the integral of f is simply 2i times
the sum of the residues at the singular points enclosed by the contour C.

Exercises

Evaluate the integrals. In each case, C is the positively oriented circle |z|  2.

1. 
C
e1/z2dz.

2. 
C
sin 1z dz.

3. 
C
cos 1z dz.

4. 
C

1
z sin 1z dz.

5. 
C

1
z cos 1z dz.
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10.2. Poles and other singularities. In order for the Residue Theorem to be of much help
in evaluating integrals, there needs to be some better way of computing the
residue—finding the Laurent expansion about each isolated singular point is a chore. We
shall now see that in the case of a special but commonly occurring type of singularity the
residue is easy to find. Suppose z0 is an isolated singularity of f and suppose that the
Laurent series of f at z0 contains only a finite number of terms involving negative powers
of z  z0. Thus,

fz  cn
z  z0n

 cn1
z  z0n1

 c1
z  z0

 c0  c1z  z0  .

Multiply this expression by z  z0n :

z  z  z0nfz  cn  cn1z  z0 c1z  z0n1  .

What we see is the Taylor series at z0 for the function z  z  z0nfz. The coefficient
of z  z0n1 is what we seek, and we know that this is

n1z0
n  1!

.

The sought after residue c1 is thus

c1 
zz0
Res f  n1z0

n  1! ,

where z  z  z0nfz.

Example

We shall find all the residues of the function

fz  ez
z2z2  1

.

First, observe that f has isolated singularities at 0, and i. Let’s see about the residue at 0.
Here we have
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z  z2fz  ez
z2  1

.

The residue is simply  0 :

 z  z2  1ez  2zez
z2  12

.

Hence,

z0
Res f   0  1.

Next, let’s see what we have at z  i:

z  z  ifz  ez
z2z  i

,

and so

zi
Res fz  i   e

i

2i .

In the same way, we see that

zi
Res f  ei

2i .

Let’s find the integral 
C

ez
z2z21

dz , where C is the contour pictured:
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This is now easy. The contour is positive oriented and encloses two singularities of f; viz, i
and i. Hence,


C

ez
z2z2  1

dz  2i
zi
Res f 

zi
Res f

 2i  e
i

2i 
ei
2i

 2i sin1.

Miraculously easy!

There is some jargon that goes with all this. An isolated singular point z0 of f such that the
Laurent series at z0 includes only a finite number of terms involving negative powers of
z  z0 is called a pole. Thus, if z0 is a pole, there is an integer n so that z  z  z0nfz
is analytic at z0, and fz0  0. The number n is called the order of the pole. Thus, in the
preceding example, 0 is a pole of order 2, while i and i are poles of order 1. (A pole of
order 1 is frequently called a simple pole.) We must hedge just a bit here. If z0 is an
isolated singularity of f and there are no Laurent series terms involving negative powers of
z  z0, then we say z0 is a removable singularity.

Example

Let

fz  sin z
z ;

then the singularity z  0 is a removable singularity:

fz  1
z sin z 

1
z z 

z3
3! 

z5
5!  

 1  z
2

3! 
z4
5! 

and we see that in some sense f is ”really” analytic at z  0 if we would just define it to be
the right thing there.

A singularity that is neither a pole or removable is called an essential singularity.

Let’s look at one more labor-saving trick—or technique, if you prefer. Suppose f is a
function:
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fz  pz
qz ,

where p and q are analytic at z0, and we have qz0  0, while qz0  0, and pz0  0.
Then

fz  pz
qz  pz0  pz0z  z0 

qz0z  z0  qz0
2 z  z02

,

and so

z  z  z0fz  pz0  pz0z  z0 
qz0  qz0

2 z  z0 
.

Thus z0 is a simple pole and

zz0
Res f  z0  pz0

qz0
.

Example

Find the integral


C

cos z
ez  1 dz,

where C is the rectangle with sides x  1, y  , and y  3.
The singularities of the integrand are all the places at which ez  1, or in other words, the
points z  0,2i,4i, . The singularities enclosed by C are 0 and 2i. Thus,


C

cos z
ez  1 dz  2i z0

Res f 
z2i
Res f ,

where

fz  cos z
ez  1 .
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Observe this is precisely the situation just discussed: fz  pz
qz , where p and q are

analytic, etc.,etc. Now,

pz
qz

 cos z
ez .

Thus,

z0
Res f  cos0

1  1,and

z2i
Res f  cos2i

e2i
 e2  e2

2  cosh2.

Finally,


C

cos z
ez  1 dz  2i z0

Res f 
z2i
Res f

 2i1  cosh2

Exercises

6. Suppose f has an isolated singularity at z0. Then, of course, the derivative f  also has an
isolated singularity at z0. Find the residue

zz0
Res f .

7. Given an example of a function f with a simple pole at z0 such that
zz0
Res f  0, or explain

carefully why there is no such function.

8. Given an example of a function f with a pole of order 2 at z0 such that
zz0
Res f  0, or

explain carefully why there is no such function.

9. Suppose g is analytic and has a zero of order n at z0 (That is, gz  z  z0nhz, where
hz0  0.). Show that the function f given by

fz  1
gz
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has a pole of order n at z0. What is
zz0
Res f ?

10. Suppose g is analytic and has a zero of order n at z0. Show that the function f given by

fz  gz
gz

has a simple pole at z0, and
zz0
Res f  n.

11. Find


C

cos z
z2  4

dz,

where C is the positively oriented circle |z|  6.

12. Find


C

tan zdz,

where C is the positively oriented circle |z|  2.

13. Find


C

1
z2  z  1

dz,

where C is the positively oriented circle |z|  10.
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