Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppose f is analytic on C. Suppose moreover that the only singularities of f inside C are poles. If $f(z) \neq 0$ for all $z \epsilon C$, then $\Gamma=f(C)$ is a closed curve which does not pass through the origin. If

$$
\gamma(t), \alpha \leq t \leq \beta
$$

is a complex description of C, then

$$
\zeta(t)=f(\gamma(t)), \alpha \leq t \leq \beta
$$

is a complex description of Γ. Now, let's compute

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=\int_{\alpha}^{\beta} \frac{f^{\prime}(\gamma(t))}{f(\gamma(t))} \gamma^{\prime}(t) d t .
$$

But notice that $\zeta^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Hence,

$$
\begin{aligned}
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z & =\int_{\alpha}^{\beta} \frac{f^{\prime}(\gamma(t))}{f(\gamma(t))} \gamma^{\prime}(t) d t=\int_{\alpha}^{\beta} \frac{\zeta^{\prime}(t)}{\zeta(t)} d t \\
& =\int_{\Gamma} \frac{1}{z} d z=n 2 \pi i
\end{aligned}
$$

where $|n|$ is the number of times Γ "winds around" the origin. The integer n is positive in case Γ is traversed in the positive direction, and negative in case the traversal is in the negative direction.

Next, we shall use the Residue Theorem to evaluate the integral $\int_{C} \frac{f^{\prime}(z)}{f(z)} d z$. The singularities of the integrand $\frac{f^{\prime}(z)}{f(z)}$ are the poles of f together with the zeros of f. Let's find the residues at these points. First, let $Z=\left\{z_{1}, z_{2}, \ldots, z_{K}\right\}$ be set of all zeros of f. Suppose the order of the zero z_{j} is n_{j}. Then $f(z)=\left(z-z_{j}\right)^{n_{j}} h(z)$ and $h\left(z_{j}\right) \neq 0$. Thus,

$$
\begin{aligned}
\frac{f^{\prime}(z)}{f(z)} & =\frac{\left(z-z_{j}\right)^{n_{j}} h^{\prime}(z)+n_{j}\left(z-z_{j}\right)^{n_{j}-1} h(z)}{\left(z-z_{j}\right)^{n_{j}} h(z)} \\
& =\frac{h^{\prime}(z)}{h(z)}+\frac{n_{j}}{\left(z-z_{j}\right)} .
\end{aligned}
$$

Then

$$
\phi(z)=\left(z-z_{j}\right) \frac{f^{\prime}(z)}{f(z)}=\left(z-z_{j}\right) \frac{h^{\prime}(z)}{h(z)}+n_{j,}
$$

and

$$
\operatorname{Res}_{z=z_{j}} \frac{f^{\prime}}{f}=n_{j} .
$$

The sum of all these residues is thus

$$
N=n_{1}+n_{2}+\ldots+n_{K}
$$

Next, we go after the residues at the poles of f. Let the set of poles of f be $P=\left\{p_{1}, p_{2}, \ldots, p_{J}\right\}$. Suppose p_{j} is a pole of order m_{j}. Then

$$
h(z)=\left(z-p_{j}\right)^{m_{j}} f(z)
$$

is analytic at p_{j}. In other words,

$$
f(z)=\frac{h(z)}{\left(z-p_{j}\right)^{m_{j}}} .
$$

Hence,

$$
\begin{aligned}
\frac{f^{\prime}(z)}{f(z)} & =\frac{\left(z-p_{j}\right)^{m_{j}} h^{\prime}(z)-m_{j}\left(z-p_{j}\right)^{m_{j}-1} h(z)}{\left(z-p_{j}\right)^{2 m_{j}}} \cdot \frac{\left(z-p_{j}\right)^{m_{j}}}{h(z)} \\
& =\frac{h^{\prime}(z)}{h(z)}-\frac{m_{j}}{\left(z-p_{j}\right)^{m_{j}}} .
\end{aligned}
$$

Now then,

$$
\phi(z)=\left(z-p_{j}\right)^{m_{j}} \frac{f^{\prime}(z)}{f(z)}=\left(z-p_{j}\right)^{m_{j}} \frac{h^{\prime}(z)}{h(z)}-m_{j},
$$

and so

$$
\operatorname{Res}_{z=p_{j}} \frac{f^{\prime}}{f}=\phi\left(p_{j}\right)=-m_{j}
$$

The sum of all these residues is

$$
-P=-m_{1}-m_{2}-\ldots-m_{J}
$$

Then,

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i(N-P)
$$

and we already found that

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=n 2 \pi i
$$

where n is the "winding number", or the number of times Γ winds around the origin- $n>0$ means Γ winds in the positive sense, and n negative means it winds in the negative sense. Finally, we have

$$
n=N-P
$$

where $N=n_{1}+n_{2}+\ldots+n_{K}$ is the number of zeros inside C, counting multiplicity, or the order of the zeros, and $P=m_{1}+m_{2}+\ldots+m_{J}$ is the number of poles, counting the order. This result is the celebrated argument principle.

Exercises

1. Let C be the unit circle $|z|=1$ positively oriented, and let f be given by

$$
f(z)=z^{3} .
$$

How many times does the curve $f(C)$ wind around the origin? Explain.
2. Let C be the unit circle $|z|=1$ positively oriented, and let f be given by

$$
f(z)=\frac{z^{2}+2}{z^{3}} .
$$

How many times does the curve $f(C)$ wind around the origin? Explain.
3. Let $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$, with $a_{n} \neq 0$. Prove there is an $R>0$ so that if C is the circle $|z|=R$ positively oriented, then

$$
\int_{C} \frac{p^{\prime}(z)}{p(z)} d z=2 n \pi i
$$

4. Suppose f is entire and $f(z)$ is real if and only if z is real. Explain how you know that f has at
most one zero.
11.2 Rouche's Theorem. Suppose f and g are analytic on and inside a simple closed contour C. Suppose moreover that $|f(z)|>|g(z)|$ for all $z \epsilon C$. Then we shall see that f and $f+g$ have the same number of zeros inside C. This result is Rouche's Theorem. To see why it is so, start by defining the function $\Psi(t)$ on the interval $0 \leq t \leq 1$:

$$
\Psi(t)=\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)+\operatorname{tg}^{\prime}(z)}{f(z)+\operatorname{tg}(z)} d z .
$$

Observe that this is okay-that is, the denominator of the integrand is never zero:

$$
|f(z)+\operatorname{tg}(z)| \geq\|f(t)|-t| g(t)\| \geq\|f(t)|-| g(t)\|>0 .
$$

Observe that Ψ is continuous on the interval $[0,1]$ and is integer-valued- $\Psi(t)$ is the number of zeros of $f+\operatorname{tg}$ inside C. Being continuous and integer-valued on the connected set $[0,1]$, it must be constant. In particular, $\Psi(0)=\Psi(1)$. This does the job!

$$
\Psi(0)=\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

is the number of zeros of f inside C, and

$$
\Psi(1)=\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)+g^{\prime}(z)}{f(z)+g(z)} d z
$$

is the number of zeros of $f+g$ inside C.

Example

How many solutions of the equation $z^{6}-5 z^{5}+z^{3}-2=0$ are inside the circle $|z|=1$? Rouche's Theorem makes it quite easy to answer this. Simply let $f(z)=-5 z^{5}$ and let $g(z)=z^{6}+z^{3}-2$. Then $|f(z)|=5$ and $|g(z)| \leq|z|^{6}+|z|^{3}+2=4$ for all $|z|=1$. Hence $|f(z)|>|g(z)|$ on the unit circle. From Rouche's Theorem we know then that f and $f+g$ have the same number of zeros inside $|z|=1$. Thus, there are 5 such solutions.

The following nice result follows easily from Rouche's Theorem. Suppose U is an open set (i.e., every point of U is an interior point) and suppose that a sequence (f_{n}) of functions analytic on U converges uniformly to the function f. Suppose further that f is not zero on the circle $C=\left\{z:\left|z-z_{0}\right|=R\right\} \subset U$. Then there is an integer N so that for all $n \geq N$, the functions f_{n} and f have the same number of zeros inside C.

This result, called Hurwitz's Theorem, is an easy consequence of Rouche's Theorem. Simply
observe that for $z \epsilon C$, we have $|f(z)|>\varepsilon>0$ for some ε. Now let N be large enough to insure that $\left|f_{n}(z)-f(z)\right|<\varepsilon$ on C. It follows from Rouche's Theorem that f and $f+\left(f_{n}-f\right)=f_{n}$ have the same number of zeros inside C.

Example

On any bounded set, the sequence $\left(f_{n}\right)$, where $f_{n}(z)=1+z+\frac{z^{2}}{2}+\ldots+\frac{z^{n}}{n!}$, converges uniformly to $f(z)=e^{z}$, and $f(z) \neq 0$ for all z. Thus for any R, there is an N so that for $n>N$, every zero of $1+z+\frac{z^{2}}{2}+\ldots+\frac{z^{n}}{n!}$ has modulus $>R$. Or to put it another way, given an R there is an N so that for $n>N$ no polynomial $1+z+\frac{z^{2}}{2}+\ldots+\frac{z^{n}}{n!}$ has a zero inside the circle of radius R.

Exercises

5. How many solutions of $3 e^{z}-z=0$ are in the disk $|z| \leq 1$? Explain.
6. Show that the polynomial $z^{6}+4 z^{2}-1$ has exactly two zeros inside the circle $|z|=1$.
7. How many solutions of $2 z^{4}-2 z^{3}+2 z^{2}-2 z+9=0$ lie inside the circle $|z|=1$?
8. Use Rouche's Theorem to prove that every polynomial of degree n has exactly n zeros (counting multiplicity, of course).
9. Let C be the closed unit disk $|z| \leq 1$. Suppose the function f analytic on C maps C into the open unit disk $|z|<1$-that is, $|f(z)|<1$ for all $z \epsilon C$. Prove there is exactly one $w \in C$ such that $f(w)=w$. (The point w is called a fixed point of f.)
