
Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and supposef is analytic onC.
Suppose moreover that the only singularities off insideC are poles. Iffz ≠ 0 for all zεC, then
Γ = fC is a closed curve which does not pass through the origin. If

γt, α ≤ t ≤ β

is a complex description ofC, then

ζt = fγt, α ≤ t ≤ β

is a complex description ofΓ. Now, let’s compute

∫
C

f ′z
fz

dz = ∫
α

β
f ′γt
fγt

γ ′tdt.

But notice thatζ ′t = f ′γtγ ′t. Hence,

∫
C

f ′z
fz

dz = ∫
α

β
f ′γt
fγt

γ ′tdt = ∫
α

β
ζ ′t
ζt

dt

= ∫
Γ

1
z dz = n2πi,

where|n| is the number of timesΓ ”winds around” the origin. The integern is positive in caseΓ is
traversed in the positive direction, and negative in case the traversal is in the negative direction.

Next, we shall use the Residue Theorem to evaluate the integral∫
C

f ′z
fz

dz. The singularities of the

integrand f ′z
fz

are the poles off together with the zeros off. Let’s find the residues at these points.

First, letZ = z1,z2,… ,zK be set of all zeros off. Suppose the order of the zeroz j is n j. Then
fz = z − z jnj hz andhz j ≠ 0. Thus,

f ′z
fz

=
z − z jnj h ′z + n jz − z jnj−1hz

z − z jnj hz

=
h ′z
hz

+
n j

z − z j
.
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Then

φz = z − z j
f ′z
fz

= z − z j
h ′z
hz

+ n j,

and

z=zj
Res f ′

f
= n j.

The sum of all these residues is thus

N = n1 + n2 +…+nK.

Next, we go after the residues at the poles off. Let the set of poles off beP = p1,p2,… ,pJ.
Supposep j is a pole of orderm j. Then

hz = z − p jmj fz

is analytic atp j. In other words,

fz =
hz

z − p jmj
.

Hence,

f ′z
fz

=
z − p jmj h ′z − m jz − p jmj−1hz

z − p j2mj
⋅
z − p jmj

hz

=
h ′z
hz

− m j

z − p jmj
.

Now then,

φz = z − p jmj f ′z
fz

= z − p jmj h ′z
hz

− m j,

and so

z=pj
Res f ′

f
= φp j = −m j.

The sum of all these residues is

− P = −m1 − m2 −…−mJ
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Then,

∫
C

f ′z
fz

dz = 2πiN − P;

and we already found that

∫
C

f ′z
fz

dz = n2πi,

wheren is the ”winding number”, or the number of timesΓ winds around the origin—n > 0 means
Γ winds in the positive sense, andn negative means it winds in the negative sense. Finally, we have

n = N − P,

whereN = n1 + n2 +…+nK is the number of zeros insideC, counting multiplicity, or the order of
the zeros, andP = m1 + m2 +…+mJ is the number of poles, counting the order. This result is the
celebratedargument principle.

Exercises

1. Let C be the unit circle|z| = 1 positively oriented, and letf be given by

fz = z3.

How many times does the curvefC wind around the origin? Explain.

2. Let C be the unit circle|z| = 1 positively oriented, and letf be given by

fz = z2 + 2
z3 .

How many times does the curvefC wind around the origin? Explain.

3. Let pz = anzn + an−1zn−1 +…+a1z + a0, with an ≠ 0. Prove there is anR > 0 so that ifC is
the circle|z| = R positively oriented, then

∫
C

p ′z
pz

dz = 2nπi.

4. Supposef is entire andfz is real if and only ifz is real. Explain how you know thatf has at
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most one zero.

11.2 Rouche’s Theorem.Supposef andg are analytic on and inside a simple closed contourC.
Suppose moreover that|fz| > |gz| for all zεC. Then we shall see thatf andf + g have the same
number of zeros insideC. This result isRouche’s Theorem.To see why it is so, start by defining the
functionΨt on the interval 0≤ t ≤ 1 :

Ψt = 1
2πi ∫

C

f ′z + tg ′z
fz + tgz

dz.

Observe that this is okay—that is, the denominator of the integrand is never zero:

|fz + tgz| ≥ ||ft|− t|gt|| ≥ ||ft|− |gt|| > 0.

Observe thatΨ is continuous on the interval0,1 and is integer-valued—Ψt is the number of
zeros off + tg insideC. Being continuous and integer-valued on the connected set0,1, it must be
constant. In particular,Ψ0 = Ψ1. This does the job!

Ψ0 = 1
2πi ∫

C

f ′z
fz

dz

is the number of zeros off insideC, and

Ψ1 = 1
2πi ∫

C

f ′z + g ′z
fz + gz

dz

is the number of zeros off + g insideC.

Example

How many solutions of the equationz6 − 5z5 + z3 − 2 = 0 are inside the circle|z| = 1? Rouche’s
Theorem makes it quite easy to answer this. Simply letfz = −5z5 and letgz = z6 + z3 − 2. Then
|fz| = 5 and|gz| ≤ |z|6 + |z|3 + 2 = 4 for all |z| = 1. Hence|fz| > |gz| on the unit circle. From
Rouche’s Theorem we know then thatf andf + g have the same number of zeros inside|z| = 1. Thus,
there are 5 such solutions.

The following nice result follows easily from Rouche’s Theorem. SupposeU is an open set (i.e.,
every point ofU is an interior point) and suppose that a sequencefn of functions analytic onU
converges uniformly to the functionf. Suppose further thatf is not zero on the circle
C = z : |z − z0 | = R ⊂ U. Then there is an integerN so that for alln ≥ N, the functionsfn andf
have the same number of zeros insideC.

This result, calledHurwitz’s Theorem , is an easy consequence of Rouche’s Theorem. Simply
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observe that forzεC, we have|fz| >  > 0 for some. Now letN be large enough to insure that
|fnz − fz| <  onC. It follows from Rouche’s Theorem thatf andf + fn − f = fn have the same
number of zeros insideC.

Example

On any bounded set, the sequencefn, wherefnz = 1 + z + z2

2 +…+ zn

n! , converges uniformly to
fz = ez, andfz ≠ 0 for all z. Thus for anyR, there is anN so that forn > N, every zero of
1 + z + z2

2 +…+ zn

n! has modulus> R. Or to put it another way, given anR there is anN so that for
n > N no polynomial 1+ z + z2

2 +…+ zn

n! has a zero inside the circle of radiusR.

Exercises

5. How many solutions of 3ez − z = 0 are in the disk|z| ≤ 1? Explain.

6. Show that the polynomialz6 + 4z2 − 1 has exactly two zeros inside the circle|z| = 1.

7. How many solutions of 2z4 − 2z3 + 2z2 − 2z + 9 = 0 lie inside the circle|z| = 1?

8. Use Rouche’s Theorem to prove that every polynomial of degreen has exactlyn zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk|z| ≤ 1. Suppose the functionf analytic onC mapsC into the open
unit disk|z| < 1—that is,|fz| < 1 for all zεC. Prove there is exactly onewεC such thatfw = w.
(The pointw is called afixed point of f .)
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