
Chapter Two

Complex Functions

2.1. Functions of a real variable. A function  : I  C from a set I of reals into the
complex numbers C is actually a familiar concept from elementary calculus. It is simply a
function from a subset of the reals into the plane, what we sometimes call a vector-valued
function. Assuming the function  is nice, it provides a vector, or parametric, description
of a curve. Thus, the set of all t : t  eit  cos t  i sin t  cos t, sin t, 0  t  2
is the circle of radius one, centered at the origin.

We also already know about the derivatives of such functions. If t  xt  iyt, then
the derivative of  is simply  t  x t  iy t, interpreted as a vector in the plane, it is
tangent to the curve described by  at the point t.

Example. Let t  t  it2, 1  t  1. One easily sees that this function describes that
part of the curve y  x2 between x  1 and x  1:

0

1

-1 -0.5 0.5 1x

Another example. Suppose there is a body of massM ”fixed” at the origin–perhaps the
sun–and there is a body of mass m which is free to move–perhaps a planet. Let the location
of this second body at time t be given by the complex-valued function zt. We assume the
only force on this mass is the gravitational force of the fixed body. This force f is thus

f  GMm
|zt|2

 zt
|zt|

where G is the universal gravitational constant. Sir Isaac Newton tells us that

mzt  f  GMm
|zt|2

 zt
|zt|
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Hence,

z   GM
|z|3

z

Next, let’s write this in polar form, z  rei:

d2
dt2 

rei   kr2
ei

where we have written GM  k. Now, let’s see what we have.

d
dt re

i  r ddt e
i   drdt e

i

Now,

d
dt e

i   d
dt cos  i sin

  sin  icos ddt
 icos  i sin ddt
 i ddt e

i.

(Additional evidence that our notation ei  cos  i sin is reasonable.)
Thus,

d
dt re

i  r ddt e
i   drdt e

i

 r i ddt e
i  drdt e

i

 dr
dt  ir

d
dt ei.

Now,
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d2
dt2 

rei  d2r
dt2

 i drdt
d
dt  ir

d2
dt2

ei 

dr
dt  ir

d
dt i ddt e

i

 d2r
dt2

 r d
dt

2
 i r d

2
dt2

 2 drdt
d
dt ei

Now, the equation d2
dt2 re

i   k
r2
ei becomes

d2r
dt2

 r d
dt

2
 i r d

2
dt2

 2 drdt
d
dt   k

r2
.

This gives us the two equations

d2r
dt2

 r d
dt

2
  k

r2
,

and,

r d
2
dt2

 2 drdt
d
dt  0.

Multiply by r and this second equation becomes

d
dt r2 ddt  0.

This tells us that

  r2 ddt

is a constant. (This constant  is called the angular momentum.) This result allows us to
get rid of d

dt in the first of the two differential equations above:

d2r
dt2

 r 
r2

2
  k

r2

or,

d2r
dt2

 2
r3

  k
r2
.
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Although this now involves only the one unknown function r, as it stands it is tough to
solve. Let’s change variables and think of r as a function of . Let’s also write things in
terms of the function s  1

r . Then,

d
dt 

d
dt

d
d  

r2
d
d .

Hence,
dr
dt  

r2
dr
d   dsd ,

and so
d2r
dt2

 d
dt 

ds
d  s2 dd  dsd

 2s2 d
2s
d2

,

and our differential equation looks like

d2r
dt2

 2
r3

 2s2 d
2s
d2

 2s3  ks2,

or,
d2s
d2

 s  k
2
.

This one is easy. From high school differential equations class, we remember that

s  1
r  Acos    k

2
,

where A and  are constants which depend on the initial conditions. At long last,

r  2/k
1  cos   ,

where we have set   A2/k. The graph of this equation is, of course, a conic section of
eccentricity .

Exercises
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1. a)What curve is described by the function t  3t  4  it  6, 0  t  1 ?
b)Suppose z and w are complex numbers. What is the curve described by

t  1  tw  tz, 0  t  1 ?

2. Find a function  that describes that part of the curve y  4x3  1 between x  0 and
x  10.

3. Find a function  that describes the circle of radius 2 centered at z  3  2i .

4. Note that in the discussion of the motion of a body in a central gravitational force field,
it was assumed that the angular momentum  is nonzero. Explain what happens in case
  0.

2.2 Functions of a complex variable. The real excitement begins when we consider
function f : D  C in which the domain D is a subset of the complex numbers. In some
sense, these too are familiar to us from elementary calculus—they are simply functions
from a subset of the plane into the plane:

fz  fx,y  ux,y  ivx,y  ux,y,vx,y

Thus fz  z2 looks like fz  z2  x  iy2  x2  y2  2xyi. In other words,
ux,y  x2  y2 and vx,y  2xy. The complex perspective, as we shall see, generally
provides richer and more profitable insights into these functions.

The definition of the limit of a function f at a point z  z0 is essentially the same as that
which we learned in elementary calculus:

zz0
lim fz  L

means that given an   0, there is a  so that |fz  L|   whenever 0  |z  z0 |  . As
you could guess, we say that f is continuous at z0 if it is true that

zz0
lim fz  fz0. If f is

continuous at each point of its domain, we say simply that f is continuous.

Suppose both
zz0
lim fz and

zz0
lim gz exist. Then the following properties are easy to

establish:
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zz0
lim fz  gz 

zz0
lim fz 

zz0
lim gz

zz0
lim fzgz 

zz0
lim fz

zz0
lim gz

and,

zz0
lim fz

gz  zz0
lim fz

zz0
lim gz

provided, of course, that
zz0
lim gz  0.

It now follows at once from these properties that the sum, difference, product, and quotient
of two functions continuous at z0 are also continuous at z0. (We must, as usual, except the
dreaded 0 in the denominator.)

It should not be too difficult to convince yourself that if z  x,y, z0  x0,y0, and
fz  ux,y  ivx,y, then

zz0
lim fz 

x,yx0,y0
lim ux,y  i

x,yx0,y0
lim vx,y

Thus f is continuous at z0  x0,y0 precisely when u and v are.

Our next step is the definition of the derivative of a complex function f. It is the obvious
thing. Suppose f is a function and z0 is an interior point of the domain of f . The derivative
f z0 of f is

f z0 
zz0
lim fz  fz0

z  z0

Example

Suppose fz  z2 . Then, letting z  z  z0, we have
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zz0
lim fz  fz0

z  z0 
z0
lim fz0  z  fz0

z


z0
lim z0  z2  z02

z


z0
lim 2z0z  z2

z


z0
lim 2z0  z

 2z0

No surprise here–the function fz  z2 has a derivative at every z, and it’s simply 2z.

Another Example

Let fz  zz. Then,

z0
lim fz0  z  fz0

z 
z0
lim z0  zz0  z  z0 z 0

z


z0
lim z0z  z 0z  zz

z


z0
lim z 0  z  z0 zz

Suppose this limit exists, and choose z  x, 0. Then,

z0
lim z 0  z  z0 zz 

x0
lim z 0  x  z0 xx

 z 0  z0
Now, choose z  0,y. Then,

z0
lim z 0  z  z0 zz 

y0
lim z 0  iy  z0 iyiy

 z 0  z0

Thus, we must have z 0  z0  z 0  z0, or z0  0. In other words, there is no chance of
this limit’s existing, except possibly at z0  0. So, this function does not have a derivative
at most places.

Now, take another look at the first of these two examples. It looks exactly like what you
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did in Mrs. Turner’s 3rd grade calculus class for plain old real-valued functions. Meditate
on this and you will be convinced that all the ”usual” results for real-valued functions also
hold for these new complex functions: the derivative of a constant is zero, the derivative of
the sum of two functions is the sum of the derivatives, the ”product” and ”quotient” rules
for derivatives are valid, the chain rule for the composition of functions holds, etc., etc. For
proofs, you need only go back to your elementary calculus book and change x’s to z’s.

A bit of jargon is in order. If f has a derivative at z0, we say that f is differentiable at z0. If
f is differentiable at every point of a neighborhood of z0, we say that f is analytic at z0. (A
set S is a neighborhood of z0 if there is a disk D  z : |z  z0 |  r, r  0 so that D  S.
) If f is analytic at every point of some set S, we say that f is analytic on S. A function that
is analytic on the set of all complex numbers is said to be an entire function.

Exercises

5. Suppose fz  3xy  ix  y2. Find
z32i
lim fz, or explain carefully why it does not

exist.

6. Prove that if f has a derivative at z, then f is continuous at z.

7. Find all points at which the valued function f defined by fz  z has a derivative.

8. Find all points at which the valued function f defined by
fz  2  iz3  iz2  4z  1  7i

has a derivative.

9. Is the function f given by

fz 
 z 2
z , z  0

0 , z  0

differentiable at z  0? Explain.

2.3. Derivatives. Suppose the function f given by fz  ux,y  ivx,y has a derivative
at z  z0  x0,y0. We know this means there is a number f z0 so that

f z0 
z0
lim fz0  z  fz0

z .
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Choose z  x, 0  x. Then,

f z0 
z0
lim fz0  z  fz0

z


x0
lim ux0  x,y0  ivx0  x,y0  ux0,y0  ivx0,y0

x


x0
lim ux0  x,y0  ux0,y0

x  i vx0  x,y0  vx0,y0x

 u
x x0,y0  i

v
x x0,y0

Next, choose z  0,y  iy. Then,

f z0 
z0
lim fz0  z  fz0

z


y0
lim ux0,y0  y  ivx0,y0  y  ux0,y0  ivx0,y0

iy


y0
lim vx0,y0  y  vx0,y0

y  i ux0,y0  y  ux0,y0y

 v
y x0,y0  i

u
y x0,y0

We have two different expressions for the derivative f z0, and so

u
x x0,y0  i

v
x x0,y0 

v
y x0,y0  i

u
y x0,y0

or,

u
x x0,y0 

v
y x0,y0,

u
y x0,y0  

v
x x0,y0

These equations are called the Cauchy-Riemann Equations.

We have shown that if f has a derivative at a point z0, then its real and imaginary parts
satisfy these equations. Even more exciting is the fact that if the real and imaginary parts of
f satisfy these equations and if in addition, they have continuous first partial derivatives,
then the function f has a derivative. Specifically, suppose ux,y and vx,y have partial
derivatives in a neighborhood of z0  x0,y0, suppose these derivatives are continuous at
z0, and suppose
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u
x x0,y0 

v
y x0,y0,

u
y x0,y0  

v
x x0,y0.

We shall see that f is differentiable at z0.

fz0  z  fz0
z

 ux0  x,y0  y  ux0,y0  ivx0  x,y0  y  vx0,y0
x  iy .

Observe that

ux0  x,y0  y  ux0,y0  ux0  x,y0  y  ux0,y0  y 
ux0,y0  y  ux0,y0.

Thus,

ux0  x,y0  y  ux0,y0  y  x u
x ,y0  y,

and,
u
x ,y0  y 

u
x x0,y0  1,

where,

z0
lim 1  0.

Thus,

ux0  x,y0  y  ux0,y0  y  x u
x x0,y0  1 .

Proceeding similarly, we get
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fz0  z  fz0
z

 ux0  x,y0  y  ux0,y0  ivx0  x,y0  y  vx0,y0
x  iy


x u

x x0,y0  1  i
v
x x0,y0  i 2  y u

y x0,y0  3  i
v
y x0,y0  i 4

x  iy , .

where  i  0 as z  0. Now, unleash the Cauchy-Riemann equations on this quotient and
obtain,

fz0  z  fz0
z


x u

x  i
v
x  iy u

x  i
v
x

x  iy  stuff
x  iy

 u
x  i v

x  stuff
x  iy .

Here,
stuff  x1  i 2  y3  i 4.

It’s easy to show that

z0
lim stuff

z  0,

and so,

z0
lim fz0  z  fz0

z  u
x  i v

x .

In particular we have, as promised, shown that f is differentiable at z0.

Example

Let’s find all points at which the function f given by fz  x3  i1  y3 is differentiable.
Here we have u  x3 and v  1  y3. The Cauchy-Riemann equations thus look like

3x2  31  y2, and
0  0.
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The partial derivatives of u and v are nice and continuous everywhere, so f will be
differentiable everywhere the C-R equations are satisfied. That is, everywhere

x2  1  y2; that is, where
x  1  y, or x  1  y.

This is simply the set of all points on the cross formed by the two straight lines

-2

-1

0

1

2

3

4

-3 -2 -1 1 2 3x

Exercises

10. At what points is the function f given by fz  x3  i1  y3 analytic? Explain.

11. Do the real and imaginary parts of the function f in Exercise 9 satisfy the
Cauchy-Riemann equations at z  0? What do you make of your answer?

12. Find all points at which fz  2y  ix is differentiable.

13. Suppose f is analytic on a connected open set D, and f z  0 for all zD. Prove that f
is constant.

14. Find all points at which

fz  x
x2  y2

 i y
x2  y2

is differentiable. At what points is f analytic? Explain.

15. Suppose f is analytic on the set D, and suppose Re f is constant on D. Is f necessarily
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constant on D? Explain.

16. Suppose f is analytic on the set D, and suppose |fz| is constant on D. Is f necessarily
constant on D? Explain.
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