Chapter Four

Integration

4.1. Introduction. If $\gamma: D \rightarrow \mathbf{C}$ is simply a function on a real interval $D=[\alpha, \beta]$, then the integral $\int_{\alpha}^{\beta} \gamma(t) d t$ is, of course, simply an ordered pair of everyday $3^{r d}$ grade calculus integrals:

$$
\int_{\alpha}^{\beta} \gamma(t) d t=\int_{\alpha}^{\beta} x(t) d t+i \int_{\alpha}^{\beta} y(t) d t
$$

where $\gamma(t)=x(t)+i y(t)$. Thus, for example,

$$
\int_{0}^{1}\left[\left(t^{2}+1\right)+i t^{3}\right] d t=\frac{4}{3}+\frac{i}{4}
$$

Nothing really new here. The excitement begins when we consider the idea of an integral of an honest-to-goodness complex function $f: D \rightarrow \mathbf{C}$, where D is a subset of the complex plane. Let's define the integral of such things; it is pretty much a straight-forward extension to two dimensions of what we did in one dimension back in Mrs. Turner's class.

Suppose f is a complex-valued function on a subset of the complex plane and suppose a and b are complex numbers in the domain of f. In one dimension, there is just one way to get from one number to the other; here we must also specify a path from a to b. Let C be a path from a to b, and we must also require that C be a subset of the domain of f.

Note we do not even require that $a \neq b$; but in case $a=b$, we must specify an orientation for the closed path C. We call a path, or curve, closed in case the initial and terminal points are the same, and a simple closed path is one in which no other points coincide. Next, let P be a partition of the curve; that is, $P=\left\{z_{0}, z_{1}, z_{2}, \ldots, z_{n}\right\}$ is a finite subset of C, such that $a=z_{0}, b=z_{n}$, and such that z_{j} comes immediately after z_{j-1} as we travel along C from a to b.

A Riemann sum associated with the partition P is just what it is in the real case:

$$
S(P)=\sum_{j=1}^{n} f\left(z_{j}^{*}\right) \Delta z_{j},
$$

where z_{j}^{*} is a point on the arc between z_{j-1} and z_{j}, and $\Delta z_{j}=z_{j}-z_{j-1}$. (Note that for a given partition P, there are many $S(P)$-depending on how the points z_{j}^{*} are chosen.) If there is a number L so that given any $\varepsilon>0$, there is a partition P_{ε} of C such that

$$
|S(P)-L|<\varepsilon
$$

whenever $P \supset P_{\varepsilon}$, then f is said to be integrable on C and the number L is called the integral of f on C. This number L is usually written $\int_{C} f(z) d z$.

Some properties of integrals are more or less evident from looking at Riemann sums:

$$
\int_{C} c f(z) d z=c \int_{C} f(z) d z
$$

for any complex constant c.

$$
\int_{C}(f(z)+g(z)) d z=\int_{C} f(z) d z+\int_{C} g(z) d z
$$

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let $\gamma:[\alpha, \beta] \rightarrow \mathbf{C}$ be a complex description of the curve C. We partition C by partitioning the interval $[\alpha, \beta]$ in the usual way: $\alpha=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=\beta$. Then $\left\{a=\gamma(\alpha), \gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \ldots, \gamma(\beta)=b\right\}$ is partition of C. (Recall we assume that $\gamma^{\prime}(t) \neq 0$ for a complex description of a curve C.) A corresponding Riemann sum looks like

$$
S(P)=\sum_{j=1}^{n} f\left(\gamma\left(t_{j}^{*}\right)\right)\left(\gamma\left(t_{j}\right)-\gamma\left(t_{j-1}\right)\right) .
$$

We have chosen the points $z_{j}^{*}=\gamma\left(t_{j}^{*}\right)$, where $t_{j-1} \leq t_{j}^{*} \leq t_{j}$. Next, multiply each term in the sum by 1 in disguise:

$$
S(P)=\sum_{j=1}^{n} f\left(\gamma\left(t_{j}^{*}\right)\right)\left(\frac{\gamma\left(t_{j}\right)-\gamma\left(t_{j-1}\right)}{t_{j}-t_{j-1}}\right)\left(t_{j}-t_{j-1}\right)
$$

I hope it is now reasonably convincing that "in the limit", we have

$$
\int_{C} f(z) d z=\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t .
$$

(We are, of course, assuming that the derivative γ^{\prime} exists.)

Example

We shall find the integral of $f(z)=\left(x^{2}+y\right)+i(x y)$ from $a=0$ to $b=1+i$ along three different paths, or contours, as some call them.

First, let C_{1} be the part of the parabola $y=x^{2}$ connecting the two points. A complex description of C_{1} is $\gamma_{1}(t)=t+i t^{2}, 0 \leq t \leq 1$:

Now, $\gamma_{1}^{\prime}(t)=1+2 t i$, and $f\left(\gamma_{1}(t)\right)=\left(t^{2}+t^{2}\right)+i t t^{2}=2 t^{2}+i t^{3}$. Hence,

$$
\begin{aligned}
\int_{C_{1}} f(z) d z & =\int_{0}^{1} f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t \\
& =\int_{0}^{1}\left(2 t^{2}+i t^{3}\right)(1+2 t i) d t \\
& =\int_{0}^{1}\left(2 t^{2}-2 t^{4}+5 t^{3} i\right) d t \\
& =\frac{4}{15}+\frac{5}{4} i
\end{aligned}
$$

Next, let's integrate along the straight line segment C_{2} joining 0 and $1+i$.

Here we have $\gamma_{2}(t)=t+i t, 0 \leq t \leq 1$. Thus, $\gamma_{2}^{\prime}(t)=1+i$, and our integral looks like

$$
\begin{aligned}
\int_{C_{2}} f(z) d z & =\int_{0}^{1} f\left(\gamma_{2}(t)\right) \gamma_{2}^{\prime}(t) d t \\
& =\int_{0}^{1}\left[\left(t^{2}+t\right)+i t^{2}\right](1+i) d t \\
& =\int_{0}^{1}\left[t+i\left(t+2 t^{2}\right)\right] d t \\
& =\frac{1}{2}+\frac{7}{6} i
\end{aligned}
$$

Finally, let's integrate along C_{3}, the path consisting of the line segment from 0 to 1 together with the segment from 1 to $1+i$.

We shall do this in two parts: C_{31}, the line from 0 to 1 ; and C_{32}, the line from 1 to $1+i$. Then we have

$$
\int_{C_{3}} f(z) d z=\int_{C_{31}} f(z) d z+\int_{C_{32}} f(z) d z .
$$

For C_{31} we have $\gamma(t)=t, 0 \leq t \leq 1$. Hence,

$$
\int_{C_{31}} f(z) d z=\int_{0}^{1} t^{2} d t=\frac{1}{3} .
$$

For C_{32} we have $\gamma(t)=1+i t, 0 \leq t \leq 1$. Hence,

$$
\int_{C_{32}} f(z) d z=\int_{0}^{1}(1+t+i t) i d t=-\frac{1}{2}+\frac{3}{2} i .
$$

Thus,

$$
\begin{aligned}
\int_{C_{3}} f(z) d z & =\int_{C_{31}} f(z) d z+\int_{C_{32}} f(z) d z \\
& =-\frac{1}{6}+\frac{3}{2} i .
\end{aligned}
$$

Suppose there is a number M so that $|f(z)| \leq M$ for all $z \epsilon C$. Then

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & =\left|\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{\alpha}^{\beta}\left|f(\gamma(t)) \gamma^{\prime}(t)\right| d t \\
& \leq M \int_{\alpha}^{\beta}\left|\gamma^{\prime}(t)\right| d t=M L
\end{aligned}
$$

where $L=\int_{\alpha}^{\beta}\left|\gamma^{\prime}(t)\right| d t$ is the length of C.

Exercises

1. Evaluate the integral $\int_{C} \bar{z} d z$, where C is the parabola $y=x^{2}$ from 0 to $1+i$.
2. Evaluate $\int_{C} \frac{1}{z} d z$, where C is the circle of radius 2 centered at 0 oriented counterclockwise.
3. Evaluate $\int_{C} f(z) d z$, where C is the curve $y=x^{3}$ from $-1-i$ to $1+i$, and

$$
f(z)=\left\{\begin{array}{ll}
1 & \text { for } y<0 \\
4 y & \text { for } y \geq 0
\end{array} .\right.
$$

5. Let C be the part of the circle $\gamma(t)=e^{i t}$ in the first quadrant from $a=1$ to $b=i$. Find as small an upper bound as you can for $\left|\int_{C}\left(z^{2}-\bar{z}^{4}+5\right) d z\right|$.
6. Evaluate $\int_{C} f(z) d z$ where $f(z)=z+2 \bar{z}$ and C is the path from $z=0$ to $z=1+2 i$ consisting of the line segment from 0 to 1 together with the segment from 1 to $1+2 i$.
4.3 Antiderivatives. Suppose D is a subset of the reals and $\gamma: D \rightarrow \mathbf{C}$ is differentiable at t. Suppose further that g is differentiable at $\gamma(t)$. Then let's see about the derivative of the composition $g(\gamma(t))$. It is, in fact, exactly what one would guess. First,

$$
g(\gamma(t))=u(x(t), y(t))+i v(x(t), y(t)),
$$

where $g(z)=u(x, y)+i v(x, y)$ and $\gamma(t)=x(t)+i y(t)$. Then,

$$
\frac{d}{d t} g(\gamma(t))=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+i\left(\frac{\partial v}{\partial x} \frac{d x}{d t}+\frac{\partial v}{\partial y} \frac{d y}{d t}\right) .
$$

The places at which the functions on the right-hand side of the equation are evaluated are obvious. Now, apply the Cauchy-Riemann equations:

$$
\begin{aligned}
\frac{d}{d t} g(\gamma(t)) & =\frac{\partial u}{\partial x} \frac{d x}{d t}-\frac{\partial v}{\partial x} \frac{d y}{d t}+i\left(\frac{\partial v}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial x} \frac{d y}{d t}\right) \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)\left(\frac{d x}{d t}+i \frac{d y}{d t}\right) \\
& =g^{\prime}(\gamma(t)) \gamma^{\prime}(t)
\end{aligned}
$$

The nicest result in the world!

Now, back to integrals. Let $F: D \rightarrow \mathbf{C}$ and suppose $F^{\prime}(z)=f(z)$ in D. Suppose moreover that a and b are in D and that $C \subset D$ is a contour from a to b. Then

$$
\int_{C} f(z) d z=\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t,
$$

where $\gamma:[\alpha, \beta] \rightarrow C$ describes C. From our introductory discussion, we know that $\frac{d}{d t} F(\gamma(t))=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)=f(\gamma(t)) \gamma^{\prime}(t)$. Hence,

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{\alpha}^{\beta} \frac{d}{d t} F(\gamma(t)) d t=F(\gamma(\beta))-F(\gamma(\alpha)) \\
& =F(b)-F(a) .
\end{aligned}
$$

This is very pleasing. Note that integral depends only on the points a and b and not at all on the path C. We say the integral is path independent. Observe that this is equivalent to saying that the integral of f around any closed path is 0 . We have thus shown that if in D the integrand f is the derivative of a function F, then any integral $\int_{C} f(z) d z$ for $C \subset D$ is path independent.

Example

Let C be the curve $y=\frac{1}{x^{2}}$ from the point $z=1+i$ to the point $z=3+\frac{i}{9}$. Let's find

$$
\int_{C} z^{2} d z .
$$

This is easy-we know that $F^{\prime}(z)=z^{2}$, where $F(z)=\frac{1}{3} z^{3}$. Thus,

$$
\begin{aligned}
\int_{C} z^{2} d z & =\frac{1}{3}\left[(1+i)^{3}-\left(3+\frac{i}{9}\right)^{3}\right] \\
& =-\frac{260}{27}-\frac{728}{2187} i
\end{aligned}
$$

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f between any two points in the domain is independent of path and that f is continuous. Assume also that every point in the domain D is an interior point of D and that D is connected. We shall see that in this case, f has an antiderivative. To do so, let z_{0} be any point in D, and define the function F by

$$
F(z)=\int_{C_{z}} f(z) d z
$$

where C_{z} is any path in D from z_{0} to z. Here is important that the integral is path independent, otherwise $F(z)$ would not be well-defined. Note also we need the assumption that D is connected in order to be sure there always is at least one such path.

Now, for the computation of the derivative of F :

$$
F(z+\Delta z)-F(z)=\int_{L_{\Delta z}} f(s) d s
$$

where $L_{\Delta z}$ is the line segment from z to $z+\Delta z$.

Next, observe that $\int_{L_{\Delta z}} d s=\Delta z$. Thus, $f(z)=\frac{1}{\Delta z} \int_{L_{\Delta z}} f(z) d s$, and we have

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z} \int_{L_{\Delta z}}(f(s)-f(z)) d s
$$

Now then,

$$
\begin{aligned}
\left|\frac{1}{\Delta z} \int_{L_{\Delta z}}(f(s)-f(z)) d s\right| & \leq\left|\frac{1}{\Delta z}\right||\Delta z| \max \left\{|f(s)-f(z)|: s \epsilon L_{\Delta z}\right\} \\
& \leq \max \left\{|f(s)-f(z)|: s \epsilon L_{\Delta z}\right\} .
\end{aligned}
$$

We know f is continuous at z, and so $\lim \max \left\{|f(s)-f(z)|: s \epsilon L_{\Delta z}\right\}=0$. Hence, $\Delta z \rightarrow 0$

$$
\begin{aligned}
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z) & =\lim _{\Delta z \rightarrow 0}\left(\frac{1}{\Delta z} \int_{L_{\Delta z}}(f(s)-f(z)) d s\right) \\
& =0
\end{aligned}
$$

In other words, $F^{\prime}(z)=f(z)$, and so, just as promised, f has an antiderivative! Let's summarize what we have shown in this section:

Suppose $f: D \rightarrow \mathbf{C}$ is continuous, where D is connected and every point of D is an interior point. Then f has an antiderivative if and only if the integral between any two points of D is path independent.

Exercises

7. Suppose C is any curve from 0 to $\pi+2 i$. Evaluate the integral

$$
\int_{C} \cos \left(\frac{z}{2}\right) d z
$$

8. a)Let $F(z)=\log z,-\frac{3}{4} \pi<\arg z<\frac{5}{4} \pi$. Show that the derivative $F^{\prime}(z)=\frac{1}{z}$.
b)Let $G(z)=\log z,-\frac{\pi}{4}<\arg z<\frac{7 \pi}{4}$. Show that the derivative $G^{\prime}(z)=\frac{1}{z}$.
c)Let C_{1} be a curve in the right-half plane $D_{1}=\{z: \operatorname{Re} z \geq 0\}$ from $-i$ to i that does not pass through the origin. Find the integral

$$
\int_{C_{1}} \frac{1}{z} d z
$$

d)Let C_{2} be a curve in the left-half plane $D_{2}=\{z: \operatorname{Re} z \leq 0\}$ from $-i$ to i that does not pass through the origin. Find the integral.

$$
\int_{C_{2}} \frac{1}{z} d z
$$

9. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find

$$
\int_{C} \frac{1}{z} d z .
$$

10. a)Let $H(z)=z^{c},-\pi<\arg z<\pi$. Find the derivative $H^{\prime}(z)$.
b)Let $K(z)=z^{c},-\frac{\pi}{4}<\arg z<\frac{7 \pi}{4}$. Find the derivative $K^{\prime}(z)$.
c)Let C be any path from -1 to 1 that lies completely in the upper half-plane and does not pass through the origin. (Upper half-plane $=\{z: \operatorname{Im} z \geq 0\}$.) Find

$$
\int_{C} F(z) d z
$$

where $F(z)=z^{i},-\pi<\arg z \leq \pi$.
11. Suppose P is a polynomial and C is a closed curve. Explain how you know that $\int_{C} P(z) d z=0$.

