
Chapter Six

More Integration

6.1. Cauchy’s Integral Formula. Suppose f is analytic in a region containing a simple
closed contour C with the usual positive orientation and its inside , and suppose z0 is inside
C. Then it turns out that

fz0  1
2i 

C

fz
z  z0 dz.

This is the famous Cauchy Integral Formula. Let’s see why it’s true.

Let   0 be any positive number. We know that f is continuous at z0 and so there is a
number  such that |fz  fz0|   whenever |z  z0 |  . Now let   0 be a number
such that    and the circle C0  z : |z  z0 |   is also inside C. Now, the function
fz
zz0 is analytic in the region between C and C0; thus


C

fz
z  z0 dz  

C0

fz
z  z0 dz.

We know that 
C0

1
zz0 dz  2i, so we can write


C0

fz
z  z0 dz  2ifz0  

C0

fz
z  z0 dz  fz0 

C0

1
z  z0 dz

 
C0

fz  fz0
z  z0 dz.

For zC0 we have
fz  fz0
z  z0  |fz  fz0|

|z  z0 |
 
 .

Thus,
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C0

fz
z  z0 dz  2ifz0  

C0

fz  fz0
z  z0 dz

 
 2  2.

But  is any positive number, and so


C0

fz
z  z0 dz  2ifz0  0,

or,

fz0  1
2i 

C0

fz
z  z0 dz 

1
2i 

C

fz
z  z0 dz,

which is exactly what we set out to show.

Meditate on this result. It says that if f is analytic on and inside a simple closed curve and
we know the values fz for every z on the simple closed curve, then we know the value for
the function at every point inside the curve—quite remarkable indeed.

Example

Let C be the circle |z|  4 traversed once in the counterclockwise direction. Let’s evaluate
the integral


C

cos z
z2  6z  5

dz.

We simply write the integrand as

cos z
z2  6z  5

 cos z
z  5z  1  fz

z  1 ,

where
fz  cos z

z  5 .

Observe that f is analytic on and inside C, and so,
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C

cos z
z2  6z  5

dz  
C

fz
z  1 dz  2if1

 2i cos11  5   i2 cos1

Exercises

1. Suppose f and g are analytic on and inside the simple closed curve C, and suppose
moreover that fz  gz for all z on C. Prove that fz  gz for all z inside C.

2. Let C be the ellipse 9x2  4y2  36 traversed once in the counterclockwise direction.
Define the function g by

gz  
C

s2  s  1
s  z ds.

Find a) gi b) g4i

3. Find


C

e2z
z2  4

dz,

where C is the closed curve in the picture:

4. Find 


e2z
z24

dz, where  is the contour in the picture:
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6.2. Functions defined by integrals. Suppose C is a curve (not necessarily a simple closed
curve, just a curve) and suppose the function g is continuous on C (not necessarily analytic,
just continuous). Let the function G be defined by

Gz  
C

gs
s  z ds

for all z  C. We shall show that G is analytic. Here we go.

Consider,
Gz  z  Gz

z  1
z 

C

1
s  z  z 

1
s  z gsds

 
C

gs
s  z  zs  z ds.

Next,

Gz  z  Gz
z  

C

gs
s  z2

ds  
C

1
s  z  zs  z 

1
s  z2

gsds

 
C

s  z  s  z  z
s  z  zs  z2

gsds

 z 
C

gs
s  z  zs  z2

ds.

Now we want to show that
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z0
lim z 

C

gs
s  z  zs  z2

ds  0.

To that end, let M  max|gs| : s  C, and let d be the shortest distance from z to C.
Thus, for s  C, we have |s  z|  d  0 and also

|s  z  z|  |s  z|  |z|  d  |z|.

Putting this all together, we can estimate the integrand above:

gs
s  z  zs  z2

 M
d  |z|d2

for all s  C. Finally,

z 
C

gs
s  z  zs  z2

ds  |z| M
d  |z|d2

lengthC,

and it is clear that

z0
lim z 

C

gs
s  z  zs  z2

ds  0,

just as we set out to show. Hence G has a derivative at z, and

Gz  
C

gs
s  z2

ds.

Truly a miracle!

Next we see that G has a derivative and it is just what you think it should be. Consider
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Gz  z  Gz
z  1

z 
C

1
s  z  z2

 1
s  z2

gsds

 1
z 

C

s  z2  s  z  z2
s  z  z2s  z2

gsds

 1
z 

C

2s  zz  z2
s  z  z2s  z2

gsds

 
C

2s  z  z
s  z  z2s  z2

gsds

Next,

Gz  z  Gz
z  2 

C

gs
s  z3

ds

 
C

2s  z  z
s  z  z2s  z2

 2
s  z3

gsds

 
C

2s  z2  zs  z  2s  z  z2
s  z  z2s  z3

gsds

 
C

2s  z2  zs  z  2s  z2  4zs  z  2z2
s  z  z2s  z3

gsds

 
C

3zs  z  2z2
s  z  z2s  z3

gsds

Hence,

Gz  z  Gz
z  2 

C

gs
s  z3

ds  
C

3zs  z  2z2
s  z  z2s  z3

gsds

 |z| |3m|  2|z|M
d  z2d3

,

where m  max|s  z| : s  C. It should be clear then that

z0
lim Gz  z  Gz

z  2 
C

gs
s  z3

ds  0,

or in other words,
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Gz  2 
C

gs
s  z3

ds.

Suppose f is analytic in a region D and suppose C is a positively oriented simple closed
curve in D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula,
we know that

2ifz  
C

fs
s  z ds

and so with g  f in the formulas just derived, we have

f z  1
2i 

C

fs
s  z2

ds, and f z  2
2i 

C

fs
s  z3

ds

for all z inside the closed curve C. Meditate on these results. They say that the derivative
of an analytic function is also analytic. Now suppose f is continuous on a domain D in
which every point of D is an interior point and suppose that 

C
fzdz  0 for every closed

curve in D. Then we know that f has an antiderivative in D—in other words f is the
derivative of an analytic function. We now know this means that f is itself analytic. We
thus have the celebratedMorera’s Theorem:

If f:D  C is continuous and such that 
C
fzdz  0 for every closed curve in D, then f is

analytic in D.

Example

Let’s evaluate the integral


C

ez
z3
dz,

where C is any positively oriented closed curve around the origin. We simply use the
equation

f z  2
2i 

C

fs
s  z3

ds
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with z  0 and fs  es.Thus,

ie0  i  
C

ez
z3
dz.

Exercises

5. Evaluate


C

sin z
z2
dz

where C is a positively oriented closed curve around the origin.

6. Let C be the circle |z  i|  2 with the positive orientation. Evaluate

a) 
C

1
z24

dz b) 
C

1
z242

dz

7. Suppose f is analytic inside and on the simple closed curve C. Show that


C

f z
z  w dz  

C

fz
z  w2

dz

for every w  C.

8. a) Let  be a real constant, and let C be the circle t  eit,   t  . Evaluate


C

ez
z dz.

b) Use your answer in part a) to show that


0



ecos t cos sin tdt  .

6.3. Liouville’s Theorem. Suppose f is entire and bounded; that is, f is analytic in the
entire plane and there is a constant M such that |fz|  M for all z. Then it must be true
that f z  0 identically. To see this, suppose that f w  0 for some w. Choose R large
enough to insure that MR  |f w|. Now let C be a circle centered at 0 and with radius
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  maxR, |w|. Then we have :

M
  |f w|  1

2i 
C

fs
s  w2

ds

 1
2

M
2
2  M

 ,

a contradiction. It must therefore be true that there is no w for which f w  0; or, in other
words, f z  0 for all z. This, of course, means that f is a constant function. What we
have shown has a name, Liouville’s Theorem:

The only bounded entire functions are the constant functions.

Let’s put this theorem to some good use. Let pz  anzn  an1zn1 a1z  a0 be a
polynomial. Then

pz  an  an1z  an2
z2

 a0zn zn.

Now choose R large enough to insure that for each j  1,2, ,n, we have anj
zj

 |an |
2n

whenever |z|  R. (We are assuming that an  0. ) Hence, for |z|  R, we know that

|pz|  |an |  an1
z  an2

z2
 a0zn |z|n

 |an |  an1
z  an2

z2
 a0

zn |z|n

 |an |  |
an |
2n 

|an |
2n 

|an |
2n |z|n

 |an |
2 |z|n.

Hence, for |z|  R,

1
|pz|

 2
|an ||z|n

 2
|an |Rn

.

Now suppose pz  0 for all z. Then 1
pz is also bounded on the disk |z|  R. Thus,

1
pz

is a bounded entire function, and hence, by Liouville’s Theorem, constant! Hence the
polynomial is constant if it has no zeros. In other words, if pz is of degree at least one,
there must be at least one z0 for which pz0  0. This is, of course, the celebrated
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Fundamental Theorem of Algebra.

Exercises

9. Suppose f is an entire function, and suppose there is anM such that Re fz  M for all
z. Prove that f is a constant function.

10. Suppose w is a solution of 5z4  z3  z2  7z  14  0. Prove that |w|  3.

11. Prove that if p is a polynomial of degree n, and if pa  0, then pz  z  aqz,
where q is a polynomial of degree n  1.

12. Prove that if p is a polynomial of degree n  1, then

pz  cz  z1k1z  z2k2 z  zjkj ,

where k1,k2, ,kj are positive integers such that n  k1  k2 kj.

13. Suppose p is a polynomial with real coefficients. Prove that p can be expressed as a
product of linear and quadratic factors, each with real coefficients.

6.4. Maximum moduli. Suppose f is analytic on a closed domain D. Then, being
continuous, |fz| must attain its maximum value somewhere in this domain. Suppose this
happens at an interior point. That is, suppose |fz|  M for all z  D and suppose that
|fz0|  M for some z0 in the interior of D. Now z0 is an interior point of D, so there is a
number R such that the disk  centered at z0 having radius R is included in D. Let C be a
positively oriented circle of radius   R centered at z0. From Cauchy’s formula, we
know

fz0  1
2i 

C

fs
s  z0 ds.

Hence,

fz0  1
2 

0

2

fz0  eitdt,

and so,
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M  |fz0|  1
2 

0

2

|fz0  eit|dt  M.

since |fz0  eit|  M. This means

M  1
2 

0

2

|fz0  eit|dt.

Thus,

M  1
2 

0

2

|fz0  eit|dt  1
2 

0

2

M  |fz0  eit|dt  0.

This integrand is continuous and non-negative, and so must be zero. In other words,
|fz|  M for all z  C. There was nothing special about C except its radius   R, and so
we have shown that f must be constant on the disk .

I hope it is easy to see that if D is a region (connected and open), then the only way in
which the modulus |fz| of the analytic function f can attain a maximum on D is for f to be
constant.

Exercises

14. Suppose f is analytic and not constant on a region D and suppose fz  0 for all z  D.
Explain why |fz| does not have a minimum in D.

15. Suppose fz  ux,y  ivx,y is analytic on a region D. Prove that if ux,y attains a
maximum value in D, then u must be constant.
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