Chapter Six

More Integration

6.1. Cauchy's Integral Formula. Suppose f is analytic in a region containing a simple closed contour C with the usual positive orientation and its inside, and suppose z_{0} is inside C. Then it turns out that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

This is the famous Cauchy Integral Formula. Let's see why it's true.

Let $\varepsilon>0$ be any positive number. We know that f is continuous at z_{0} and so there is a number δ such that $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$ whenever $\left|z-z_{0}\right|<\delta$. Now let $\rho>0$ be a number such that $\rho<\delta$ and the circle $C_{0}=\left\{z:\left|z-z_{0}\right|=\rho\right\}$ is also inside C. Now, the function $\frac{f(z)}{z-z_{0}}$ is analytic in the region between C and C_{0}; thus

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z=\int_{C_{0}} \frac{f(z)}{z-z_{0}} d z
$$

We know that $\int_{C_{0}} \frac{1}{z-z_{0}} d z=2 \pi i$, so we can write

$$
\begin{aligned}
\int_{C_{0}} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right) & =\int_{C_{0}} \frac{f(z)}{z-z_{0}} d z-f\left(z_{0}\right) \int_{C_{0}} \frac{1}{z-z_{0}} d z \\
& =\int_{C_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z .
\end{aligned}
$$

For $z \epsilon C_{0}$ we have

$$
\begin{aligned}
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| & =\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|} \\
& \leq \frac{\varepsilon}{\rho} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|\int_{C_{0}} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)\right| & =\left|\int_{C_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \\
& \leq \frac{\varepsilon}{\rho} 2 \pi \rho=2 \pi \varepsilon .
\end{aligned}
$$

But ε is any positive number, and so

$$
\left|\int_{C_{0}} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)\right|=0
$$

or,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

which is exactly what we set out to show.

Meditate on this result. It says that if f is analytic on and inside a simple closed curve and we know the values $f(z)$ for every z on the simple closed curve, then we know the value for the function at every point inside the curve-quite remarkable indeed.

Example

Let C be the circle $|z|=4$ traversed once in the counterclockwise direction. Let's evaluate the integral

$$
\int_{C} \frac{\cos z}{z^{2}-6 z+5} d z
$$

We simply write the integrand as

$$
\frac{\cos z}{z^{2}-6 z+5}=\frac{\cos z}{(z-5)(z-1)}=\frac{f(z)}{z-1}
$$

where

$$
f(z)=\frac{\cos z}{z-5}
$$

Observe that f is analytic on and inside C, and so,

$$
\begin{aligned}
\int_{C} \frac{\cos z}{z^{2}-6 z+5} d z & =\int_{C} \frac{f(z)}{z-1} d z=2 \pi i f(1) \\
& =2 \pi i \frac{\cos 1}{1-5}=-\frac{i \pi}{2} \cos 1
\end{aligned}
$$

Exercises

1. Suppose f and g are analytic on and inside the simple closed curve C, and suppose moreover that $f(z)=g(z)$ for all z on C. Prove that $f(z)=g(z)$ for all z inside C.
2. Let C be the ellipse $9 x^{2}+4 y^{2}=36$ traversed once in the counterclockwise direction. Define the function g by

$$
g(z)=\int_{C} \frac{s^{2}+s+1}{s-z} d s
$$

Find
a) $g(i)$
b) $g(4 i)$
3. Find

$$
\int_{C} \frac{e^{2 z}}{z^{2}-4} d z
$$

where C is the closed curve in the picture:

4. Find $\int_{\Gamma} \frac{e^{2 z}}{z^{2}-4} d z$, where Γ is the contour in the picture:

6.2. Functions defined by integrals. Suppose C is a curve (not necessarily a simple closed curve, just a curve) and suppose the function g is continuous on C (not necessarily analytic, just continuous). Let the function G be defined by

$$
G(z)=\int_{C} \frac{g(s)}{s-z} d s
$$

for all $z \notin C$. We shall show that G is analytic. Here we go.

Consider,

$$
\begin{aligned}
\frac{G(z+\Delta z)-G(z)}{\Delta z} & =\frac{1}{\Delta z} \int_{C}\left[\frac{1}{s-z-\Delta z}-\frac{1}{s-z}\right] g(s) d s \\
& =\int_{C} \frac{g(s)}{(s-z-\Delta z)(s-z)} d s .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\frac{G(z+\Delta z)-G(z)}{\Delta z}-\int_{C} \frac{g(s)}{(s-z)^{2}} d s & =\int_{C}\left[\frac{1}{(s-z-\Delta z)(s-z)}-\frac{1}{(s-z)^{2}}\right] g(s) d s \\
& =\int_{C}\left[\frac{(s-z)-(s-z-\Delta z)}{(s-z-\Delta z)(s-z)^{2}}\right] g(s) d s \\
& =\Delta z \int_{C} \frac{g(s)}{(s-z-\Delta z)(s-z)^{2}} d s .
\end{aligned}
$$

Now we want to show that

$$
\lim _{\Delta z \rightarrow 0}\left[\Delta z \int_{C} \frac{g(s)}{(s-z-\Delta z)(s-z)^{2}} d s\right]=0
$$

To that end, let $M=\max \{|g(s)|: s \in C\}$, and let d be the shortest distance from z to C. Thus, for $s \in C$, we have $|s-z| \geq d>0$ and also

$$
|s-z-\Delta z| \geq|s-z|-|\Delta z| \geq d-|\Delta z|
$$

Putting this all together, we can estimate the integrand above:

$$
\left|\frac{g(s)}{(s-z-\Delta z)(s-z)^{2}}\right| \leq \frac{M}{(d-|\Delta z|) d^{2}}
$$

for all $s \in C$. Finally,

$$
\left.\left|\Delta z \int_{C} \frac{g(s)}{(s-z-\Delta z)(s-z)^{2}} d s\right| \leq|\Delta z| \frac{M}{(d-|\Delta z|) d^{2}} \text { length(} C\right)
$$

and it is clear that

$$
\lim _{\Delta z \rightarrow 0}\left[\Delta z \int_{C} \frac{g(s)}{(s-z-\Delta z)(s-z)^{2}} d s\right]=0
$$

just as we set out to show. Hence G has a derivative at z, and

$$
G^{\prime}(z)=\int_{C} \frac{g(s)}{(s-z)^{2}} d s
$$

Truly a miracle!
Next we see that G^{\prime} has a derivative and it is just what you think it should be. Consider

$$
\begin{aligned}
\frac{G^{\prime}(z+\Delta z)-G^{\prime}(z)}{\Delta z} & =\frac{1}{\Delta z} \int_{C}\left[\frac{1}{(s-z-\Delta z)^{2}}-\frac{1}{(s-z)^{2}}\right] g(s) d s \\
& =\frac{1}{\Delta z} \int_{C}\left[\frac{(s-z)^{2}-(s-z-\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{2}}\right] g(s) d s \\
& =\frac{1}{\Delta z} \int_{C}\left[\frac{2(s-z) \Delta z-(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{2}}\right] g(s) d s \\
& =\int_{C}\left[\frac{2(s-z)-\Delta z}{(s-z-\Delta z)^{2}(s-z)^{2}}\right] g(s) d s
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \frac{G^{\prime}(z+\Delta z)-G^{\prime}(z)}{\Delta z}-2 \int_{C} \frac{g(s)}{(s-z)^{3}} d s \\
= & \int_{C}\left[\frac{2(s-z)-\Delta z}{(s-z-\Delta z)^{2}(s-z)^{2}}-\frac{2}{(s-z)^{3}}\right] g(s) d s \\
= & \int_{C}\left[\frac{2(s-z)^{2}-\Delta z(s-z)-2(s-z-\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}}\right] g(s) d s \\
= & \int_{C}\left[\frac{2(s-z)^{2}-\Delta z(s-z)-2(s-z)^{2}+4 \Delta z(s-z)-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}}\right] g(s) d s \\
= & \int_{C}\left[\frac{3 \Delta z(s-z)-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}}\right] g(s) d s
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\frac{G^{\prime}(z+\Delta z)-G^{\prime}(z)}{\Delta z}-2 \int_{C} \frac{g(s)}{(s-z)^{3}} d s\right| & =\left|\int_{C}\left[\frac{3 \Delta z(s-z)-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}}\right] g(s) d s\right| \\
& \leq|\Delta z| \frac{(|3 m|+2|\Delta z|) M}{(d-\Delta z)^{2} d^{3}}
\end{aligned}
$$

where $m=\max \{|s-z|: s \in C\}$. It should be clear then that

$$
\lim _{\Delta z \rightarrow 0}\left|\frac{G^{\prime}(z+\Delta z)-G^{\prime}(z)}{\Delta z}-2 \int_{C} \frac{g(s)}{(s-z)^{3}} d s\right|=0
$$

or in other words,

$$
G^{\prime \prime}(z)=2 \int_{C} \frac{g(s)}{(s-z)^{3}} d s
$$

Suppose f is analytic in a region D and suppose C is a positively oriented simple closed curve in D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula, we know that

$$
2 \pi i f(z)=\int_{C} \frac{f(s)}{s-z} d s
$$

and so with $g=f$ in the formulas just derived, we have

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s, \text { and } f^{\prime \prime}(z)=\frac{2}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{3}} d s
$$

for all z inside the closed curve C. Meditate on these results. They say that the derivative of an analytic function is also analytic. Now suppose f is continuous on a domain D in which every point of D is an interior point and suppose that $\int_{C} f(z) d z=0$ for every closed curve in D. Then we know that f has an antiderivative in D-in other words f is the derivative of an analytic function. We now know this means that f is itself analytic. We thus have the celebrated Morera's Theorem:

If $f: D \rightarrow \mathbf{C}$ is continuous and such that $\int_{C} f(z) d z=0$ for every closed curve in D, then f is analytic in D.

Example

Let's evaluate the integral

$$
\int_{C} \frac{e^{z}}{z^{3}} d z
$$

where C is any positively oriented closed curve around the origin. We simply use the equation

$$
f^{\prime \prime}(z)=\frac{2}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{3}} d s
$$

with $z=0$ and $f(s)=e^{s}$. Thus,

$$
\pi i e^{0}=\pi i=\int_{C} \frac{e^{z}}{z^{3}} d z
$$

Exercises

5. Evaluate

$$
\int_{C} \frac{\sin z}{z^{2}} d z
$$

where C is a positively oriented closed curve around the origin.
6. Let C be the circle $|z-i|=2$ with the positive orientation. Evaluate
a) $\int_{C} \frac{1}{z^{2}+4} d z$
b) $\int_{C} \frac{1}{\left(z^{2}+4\right)^{2}} d z$
7. Suppose f is analytic inside and on the simple closed curve C. Show that

$$
\int_{C} \frac{f^{\prime}(z)}{z-w} d z=\int_{C} \frac{f(z)}{(z-w)^{2}} d z
$$

for every $w \notin C$.
8. a) Let α be a real constant, and let C be the circle $\gamma(t)=e^{i t},-\pi \leq t \leq \pi$. Evaluate

$$
\int_{C} \frac{e^{\alpha z}}{z} d z
$$

b) Use your answer in part a) to show that

$$
\int_{0}^{\pi} e^{\alpha \cos t} \cos (\alpha \sin t) d t=\pi
$$

6.3. Liouville's Theorem. Suppose f is entire and bounded; that is, f is analytic in the entire plane and there is a constant M such that $|f(z)| \leq M$ for all z. Then it must be true that $f^{\prime}(z)=0$ identically. To see this, suppose that $f^{\prime}(w) \neq 0$ for some w. Choose R large enough to insure that $\frac{M}{R}<\left|f^{\prime}(w)\right|$. Now let C be a circle centered at 0 and with radius
$\rho>\max \{R,|w|\}$. Then we have :

$$
\begin{aligned}
\frac{M}{\rho} & <\left|f^{\prime}(w)\right| \leq\left|\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-w)^{2}} d s\right| \\
& \leq \frac{1}{2 \pi} \frac{M}{\rho^{2}} 2 \pi \rho=\frac{M}{\rho}
\end{aligned}
$$

a contradiction. It must therefore be true that there is no w for which $f^{\prime}(w) \neq 0$; or, in other words, $f^{\prime}(z)=0$ for all z. This, of course, means that f is a constant function. What we have shown has a name, Liouville's Theorem:

The only bounded entire functions are the constant functions.

Let's put this theorem to some good use. Let $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial. Then

$$
p(z)=\left(a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}+\ldots+\frac{a_{0}}{z^{n}}\right) z^{n} .
$$

Now choose R large enough to insure that for each $j=1,2, \ldots, n$, we have $\left|\frac{a_{n-j}}{z^{j}}\right|<\frac{\left|a_{n}\right|}{2 n}$ whenever $|z|>R$. (We are assuming that $a_{n} \neq 0$.) Hence, for $|z|>R$, we know that

Hence, for $|z|>R$,

$$
\frac{1}{|p(z)|}<\frac{2}{\left|a_{n} \| z\right|^{n}} \leq \frac{2}{\left|a_{n}\right| R^{n}} .
$$

Now suppose $p(z) \neq 0$ for all z. Then $\frac{1}{p(z)}$ is also bounded on the disk $|z| \leq R$. Thus, $\frac{1}{p(z)}$ is a bounded entire function, and hence, by Liouville's Theorem, constant! Hence the polynomial is constant if it has no zeros. In other words, if $p(z)$ is of degree at least one, there must be at least one z_{0} for which $p\left(z_{0}\right)=0$. This is, of course, the celebrated

Fundamental Theorem of Algebra.

Exercises

9. Suppose f is an entire function, and suppose there is an M such that $\operatorname{Re} f(z) \leq M$ for all z. Prove that f is a constant function.
10. Suppose w is a solution of $5 z^{4}+z^{3}+z^{2}-7 z+14=0$. Prove that $|w| \leq 3$.
11. Prove that if p is a polynomial of degree n, and if $p(a)=0$, then $p(z)=(z-a) q(z)$, where q is a polynomial of degree $n-1$.
12. Prove that if p is a polynomial of degree $n \geq 1$, then

$$
p(z)=c\left(z-z_{1}\right)^{k_{1}}\left(z-z_{2}\right)^{k_{2}} \ldots\left(z-z_{j}\right)^{k_{j}},
$$

where $k_{1}, k_{2}, \ldots, k_{j}$ are positive integers such that $n=k_{1}+k_{2}+\ldots+k_{j}$.
13. Suppose p is a polynomial with real coefficients. Prove that p can be expressed as a product of linear and quadratic factors, each with real coefficients.
6.4. Maximum moduli. Suppose f is analytic on a closed domain D. Then, being continuous, $|f(z)|$ must attain its maximum value somewhere in this domain. Suppose this happens at an interior point. That is, suppose $|f(z)| \leq M$ for all $z \in D$ and suppose that $\left|f\left(z_{0}\right)\right|=M$ for some z_{0} in the interior of D. Now z_{0} is an interior point of D, so there is a number R such that the disk Λ centered at z_{0} having radius R is included in D. Let C be a positively oriented circle of radius $\rho \leq R$ centered at z_{0}. From Cauchy's formula, we know

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z_{0}} d s
$$

Hence,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i t}\right) d t
$$

and so,

$$
M=\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| d t \leq M
$$

since $\left|f\left(z_{0}+\rho e^{i t}\right)\right| \leq M$. This means

$$
M=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| d t
$$

Thus,

$$
M-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[M-\left|f\left(z_{0}+\rho e^{i t}\right)\right|\right] d t=0 .
$$

This integrand is continuous and non-negative, and so must be zero. In other words, $|f(z)|=M$ for all $z \in C$. There was nothing special about C except its radius $\rho \leq R$, and so we have shown that f must be constant on the disk Λ.

I hope it is easy to see that if D is a region (=connected and open), then the only way in which the modulus $|f(z)|$ of the analytic function f can attain a maximum on D is for f to be constant.

Exercises

14. Suppose f is analytic and not constant on a region D and suppose $f(z) \neq 0$ for all $z \in D$. Explain why $|f(z)|$ does not have a minimum in D.
15. Suppose $f(z)=u(x, y)+i v(x, y)$ is analytic on a region D. Prove that if $u(x, y)$ attains a maximum value in D, then u must be constant.
