
Chapter Eight

Series

8.1. Sequences. The basic definitions for complex sequences and series are essentially the
same as for the real case. A sequence of complex numbers is a function g : Z  C from
the positive integers into the complex numbers. It is traditional to use subscripts to indicate
the values of the function. Thus we write gn  zn and an explicit name for the sequence
is seldom used; we write simply zn to stand for the sequence g which is such that
gn  zn. For example,  in  is the sequence g for which gn  i

n .

The number L is a limit of the sequence zn if given an   0, there is an integer N such
that |zn  L|   for all n  N. If L is a limit of zn, we sometimes say that zn
converges to L. We frequently write limzn  L. It is relatively easy to see that if the
complex sequence zn  un  ivn converges to L, then the two real sequences un and
vn each have a limit: un converges to ReL and vn converges to ImL. Conversely, if
the two real sequences un and vn each have a limit, then so also does the complex
sequence un  ivn. All the usual nice properties of limits of sequences are thus true:

limzn  wn  limzn  limwn;
limznwn  limzn limwn; and

lim zn
wn  limzn

limwn
.

provided that limzn and limwn exist. (And in the last equation, we must, of course,
insist that limwn  0.)

A necessary and sufficient condition for the convergence of a sequence an is the
celebrated Cauchy criterion: given   0, there is an integer N so that |an  am |  
whenever n,m  N.

A sequence fn of functions on a domain D is the obvious thing: a function from the
positive integers into the set of complex functions on D. Thus, for each zD, we have an
ordinary sequence fnz. If each of the sequences fnz converges, then we say the
sequence of functions fn converges to the function f defined by fz  limfnz. This
pretty obvious stuff. The sequence fn is said to converge to f uniformly on a set S if
given an   0, there is an integer N so that |fnz  fz|   for all n  N and all z  S.

Note that it is possible for a sequence of continuous functions to have a limit function that
is not continuous. This cannot happen if the convergence is uniform. To see this, suppose
the sequence fn of continuous functions converges uniformly to f on a domain D, let
z0D, and let   0. We need to show there is a  so that |fz0  fz|   whenever
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|z0  z|  . Let’s do it. First, choose N so that |fNz  fz|  
3 . We can do this because

of the uniform convergence of the sequence fn. Next, choose  so that
|fNz0  fNz|  

3 whenever |z0  z|  . This is possible because fN is continuous.
Now then, when |z0  z|  , we have

|fz0  fz|  |fz0  fNz0  fNz0  fNz  fNz  fz|
 |fz0  fNz0|  |fNz0  fNz|  |fNz  fz|
 
3  

3  
3  ,

and we have done it!

Now suppose we have a sequence fn of continuous functions which converges uniformly

on a contour C to the function f. Then the sequence 
C
fnzdz converges to 

C
fzdz. This

is easy to see. Let   0. Now let N be so that |fnz  fz|  
A for n  N, where A is the

length of C. Then,


C

fnzdz  
C

fzdz  
C

fnz  fzdz

 
A A  

whenever n  N.

Now suppose fn is a sequence of functions each analytic on some region D, and suppose
the sequence converges uniformly on D to the function f. Then f is analytic. This result is in
marked contrast to what happens with real functions—examples of uniformly convergent
sequences of differentiable functions with a nondifferentiable limit abound in the real case.
To see that this uniform limit is analytic, let z0D, and let S  z : |z  z0 |  r  D . Now
consider any simple closed curve C  S. Each fn is analytic, and so 

C
fnzdz  0 for every

n. From the uniform convergence of fn , we know that 
C
fzdz is the limit of the sequence


C
fnzdz , and so 

C
fzdz  0. Morera’s theorem now tells us that f is analytic on S, and

hence at z0. Truly a miracle.

Exercises
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1. Prove that a sequence cannot have more than one limit. (We thus speak of the limit of a
sequence.)

2. Give an example of a sequence that does not have a limit, or explain carefully why there
is no such sequence.

3. Give an example of a bounded sequence that does not have a limit, or explain carefully
why there is no such sequence.

4. Give a sequence fn of functions continuous on a set D with a limit that is not
continuous.

5. Give a sequence of real functions differentiable on an interval which converges
uniformly to a nondifferentiable function.

8.2 Series. A series is simply a sequence sn in which sn  a1  a2 an. In other
words, there is sequence an so that sn  sn1  an. The sn are usually called the partial

sums. Recall from Mrs. Turner’s class that if the series 
j1

n
aj has a limit, then it must be

true that
n
lim an  0.

Consider a series 
j1

n
fjz of functions. Chances are this series will converge for some

values of z and not converge for others. A useful result is the celebratedWeierstrass
M-test: Suppose Mj is a sequence of real numbers such thatMj  0 for all j  J, where

J is some number., and suppose also that the series 
j1

n
Mj converges. If for all zD, we

have |fjz|  Mj for all j  J, then the series 
j1

n
fjz converges uniformly on D.

To prove this, begin by letting   0 and choosing N  J so that


jm

n

Mj  

for all n,m  N. (We can do this because of the famous Cauchy criterion.) Next, observe
that

8.3




jm

n

fjz  
jm

n

|fjz|  
jm

n

Mj  .

This shows that 
j1

n
fjz converges. To see the uniform convergence, observe that


jm

n

fjz  
j0

n

fjz 
j0

m1

fjz  

for all zD and n  m  N. Thus,

n
lim 

j0

n

fjz 
j0

m1

fjz  
j0



fjz 
j0

m1

fjz  

for m  N.(The limit of a series 
j0

n
aj is almost always written as

j0


aj.)

Exercises

6. Find the set D of all z for which the sequence zn
zn3n has a limit. Find the limit.

7. Prove that the series 
j1

n
aj converges if and only if both the series 

j1

n
Reaj and


j1

n
Imaj converge.

8. Explain how you know that the series 
j1

n
 1z 

j converges uniformly on the set

|z|  5.

8.3 Power series.We are particularly interested in series of functions in which the partial
sums are polynomials of increasing degree:

snz  c0  c1z  z0  c2z  z02 cnz  z0n.
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(We start with n  0 for esthetic reasons.) These are the so-called power series. Thus,

a power series is a series of functions of the form 
j0

n
cjz  z0 j .

Let’s look first at a very special power series, the so-called Geometric series:


j0

n

zj .

Here
sn  1  z  z2 zn, and
zsn  z  z2  z3 zn1.

Subtracting the second of these from the first gives us

1  zsn  1  zn1.

If z  1, then we can’t go any further with this, but I hope it’s clear that the series does not
have a limit in case z  1. Suppose now z  1. Then we have

sn  1
1  z 

zn1
1  z .

Now if |z|  1, it should be clear that limzn1  0, and so

lim 
j0

n

zj  limsn  1
1  z .

Or,


j0



zj  1
1  z , for |z|  1.

There is a bit more to the story. First, note that if |z|  1, then the Geometric series does
not have a limit (why?). Next, note that if |z|    1, then the Geometric series converges
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uniformly to 1
1z . To see this, note that


j0

n

j

has a limit and appeal to the Weierstrass M-test.

Clearly a power series will have a limit for some values of z and perhaps not for others.
First, note that any power series has a limit when z  z0. Let’s see what else we can say.

Consider a power series 
j0

n
cjz  z0 j . Let

  lim sup j |cj | .

(Recall from 6th grade that lim supak  limsupak : k  n. ) Now let R  1
 . (We

shall say R  0 if   , and R   if   0. ) We are going to show that the series
converges uniformly for all |z  z0 |    R and diverges for all |z  z0 |  R.

First, let’s show the series does not converge for |z  z0 |  R. To begin, let k be so that

1
|z  z0 |

 k  1
R  .

There are an infinite number of cj for which j |cj |  k, otherwise lim sup j |cj |  k. For
each of these cj we have

|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  1.

It is thus not possible for
n
lim |cnz  z0n |  0, and so the series does not converge.

Next, we show that the series does converge uniformly for |z  z0 |    R. Let k be so
that

  1
R  k  1

 .

Now, for j large enough, we have j |cj |  k. Thus for |z  z0 |  , we have
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|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  k j.

The geometric series 
j0

n
k j converges because k  1 and the uniform convergence

of 
j0

n
cjz  z0 j follows from the M-test.

Example

Consider the series 
j0

n
1
j! z

j . Let’s compute R  1/ lim sup j |cj |  lim sup j j! . Let

K be any positive integer and choose an integer m large enough to insure that 2m  K2K
2K! .

Now consider n!
Kn , where n  2K  m:

n!
Kn  2K  m!

K2Km
 2K  m2K  m  1 2K  12K!

KmK2K

 2m 2K!
K2K

 1

Thus n n!  K. Reflect on what we have just shown: given any number K, there is a
number n such that n n! is bigger than it. In other words, R  lim sup j j!   , and so the

series 
j0

n
1
j! z

j converges for all z.

Let’s summarize what we have. For any power series 
j0

n
cjz  z0 j , there is a number

R  1
lim sup j |cj |

such that the series converges uniformly for |z  z0 |    R and does not

converge for |z  z0 |  R. (Note that we may have R  0 or R  .) The number R is
called the radius of convergence of the series, and the set |z  z0 |  R is called the circle
of convergence. Observe also that the limit of a power series is a function analytic inside
the circle of convergence (why?).

Exercises

9. Suppose the sequence of real numbers  j has a limit. Prove that
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lim sup j  lim j.

For each of the following, find the set D of points at which the series converges:

10. 
j0

n
j!zj .

11. 
j0

n
jzj .

12. 
j0

n
j2

3j
zj .

13. 
j0

n
1j

22jj!2
z2j

8.4 Integration of power series. Inside the circle of convergence, the limit

Sz 
j0



cjz  z0 j

is an analytic function. We shall show that this series may be integrated
”term-by-term”—that is, the integral of the limit is the limit of the integrals. Specifically, if
C is any contour inside the circle of convergence, and the function g is continuous on C,
then


C

gzSzdz 
j0



cj 
C

gzz  z0 jdz.

Let’s see why this. First, let   0. Let M be the maximum of |gz| on C and let L be the
length of C. Then there is an integer N so that


jn



cjz  z0 j  
ML

8.8



for all n  N. Thus,


C

gz
jn



cjz  z0 j dz  ML 
ML  ,

Hence,


C

gzSzdz 
j0

n1

cj 
C

gzz  z0 jdz  
C

gz
jn



cjz  z0 j dz

 ,

and we have shown what we promised.

8.5 Differentiation of power series. Again, let

Sz 
j0



cjz  z0 j.

Now we are ready to show that inside the circle of convergence,

Sz 
j1



jcjz  z0 j1.

Let z be a point inside the circle of convergence and let C be a positive oriented circle
centered at z and inside the circle of convergence. Define

gs  1
2is  z2

,

and apply the result of the previous section to conclude that
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C

gsSsds 
j0



cj 
C

gss  z0 jds, or

1
2i 

C

Ss
s  z2

ds 
j0



cj 12i 
C

s  z0 j
s  z2

ds. Thus

Sz 
j0



jcjz  z0 j1,

as promised!

Exercises

14. Find the limit of


j0

n

j  1zj .

For what values of z does the series converge?

15. Find the limit of


j1

n
zj
j .

For what values of z does the series converge?

16. Find a power series 
j0

n
cjz  1 j such that

1
z 

j0



cjz  1 j, for |z  1|  1.

17. Find a power series 
j0

n
cjz  1 j such that
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Log z 
j0



cjz  1 j, for |z  1|  1.
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