Chapter Eight

Series

8.1. Sequences. The basic definitions for complex sequences and series are essentially the same as for the real case. A sequence of complex numbers is a function $g: Z_{+} \rightarrow \mathbf{C}$ from the positive integers into the complex numbers. It is traditional to use subscripts to indicate the values of the function. Thus we write $g(n) \equiv z_{n}$ and an explicit name for the sequence is seldom used; we write simply $\left(z_{n}\right)$ to stand for the sequence g which is such that $g(n)=z_{n}$. For example, $\left(\frac{i}{n}\right)$ is the sequence g for which $g(n)=\frac{i}{n}$.

The number L is a limit of the sequence $\left(z_{n}\right)$ if given an $\varepsilon>0$, there is an integer N_{ε} such that $\left|z_{n}-L\right|<\varepsilon$ for all $n \geq N_{\varepsilon}$. If L is a limit of $\left(z_{n}\right)$, we sometimes say that $\left(z_{n}\right)$ converges to L. We frequently write $\lim \left(z_{n}\right)=L$. It is relatively easy to see that if the complex sequence $\left(z_{n}\right)=\left(u_{n}+i v_{n}\right)$ converges to L, then the two real sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ each have a limit: $\left(u_{n}\right)$ converges to $\operatorname{Re} L$ and $\left(v_{n}\right)$ converges to $\operatorname{Im} L$. Conversely, if the two real sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ each have a limit, then so also does the complex sequence $\left(u_{n}+i v_{n}\right)$. All the usual nice properties of limits of sequences are thus true:

$$
\begin{aligned}
\lim \left(z_{n} \pm w_{n}\right) & =\lim \left(z_{n}\right) \pm \lim \left(w_{n}\right) \\
\lim \left(z_{n} w_{n}\right) & =\lim \left(z_{n}\right) \lim \left(w_{n}\right) ; \text { and } \\
\lim \left(\frac{z_{n}}{w_{n}}\right) & =\frac{\lim \left(z_{n}\right)}{\lim \left(w_{n}\right)} .
\end{aligned}
$$

provided that $\lim \left(z_{n}\right)$ and $\lim \left(w_{n}\right)$ exist. (And in the last equation, we must, of course, insist that $\lim \left(w_{n}\right) \neq 0$.)

A necessary and sufficient condition for the convergence of a sequence $\left(a_{n}\right)$ is the celebrated Cauchy criterion: given $\varepsilon>0$, there is an integer N_{ε} so that $\left|a_{n}-a_{m}\right|<\varepsilon$ whenever $n, m>N_{\varepsilon}$.

A sequence $\left(f_{n}\right)$ of functions on a domain D is the obvious thing: a function from the positive integers into the set of complex functions on D. Thus, for each $z \epsilon D$, we have an ordinary sequence $\left(f_{n}(z)\right)$. If each of the sequences $\left(f_{n}(z)\right)$ converges, then we say the sequence of functions $\left(f_{n}\right)$ converges to the function f defined by $f(z)=\lim \left(f_{n}(z)\right)$. This pretty obvious stuff. The sequence $\left(f_{n}\right)$ is said to converge to f uniformly on a set S if given an $\varepsilon>0$, there is an integer N_{ε} so that $\left|f_{n}(z)-f(z)\right|<\varepsilon$ for all $n \geq N_{\varepsilon}$ and all $z \in S$.

Note that it is possible for a sequence of continuous functions to have a limit function that is not continuous. This cannot happen if the convergence is uniform. To see this, suppose the sequence $\left(f_{n}\right)$ of continuous functions converges uniformly to f on a domain D, let $z_{0} \epsilon D$, and let $\varepsilon>0$. We need to show there is a δ so that $\left|f\left(z_{0}\right)-f(z)\right|<\varepsilon$ whenever
$\left|z_{0}-z\right|<\delta$. Let's do it. First, choose N so that $\left|f_{N}(z)-f(z)\right|<\frac{\varepsilon}{3}$. We can do this because of the uniform convergence of the sequence $\left(f_{n}\right)$. Next, choose δ so that $\left|f_{N}\left(z_{0}\right)-f_{N}(z)\right|<\frac{\varepsilon}{3}$ whenever $\left|z_{0}-z\right|<\delta$. This is possible because f_{N} is continuous. Now then, when $\left|z_{0}-z\right|<\delta$, we have

$$
\begin{aligned}
\left|f\left(z_{0}\right)-f(z)\right| & =\left|f\left(z_{0}\right)-f_{N}\left(z_{0}\right)+f_{N}\left(z_{0}\right)-f_{N}(z)+f_{N}(z)-f(z)\right| \\
& \leq\left|f\left(z_{0}\right)-f_{N}\left(z_{0}\right)\right|+\left|f_{N}\left(z_{0}\right)-f_{N}(z)\right|+\left|f_{N}(z)-f(z)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon,
\end{aligned}
$$

and we have done it!

Now suppose we have a sequence (f_{n}) of continuous functions which converges uniformly on a contour C to the function f. Then the sequence $\left(\int_{C} f_{n}(z) d z\right)$ converges to $\int_{C} f(z) d z$. This is easy to see. Let $\varepsilon>0$. Now let N be so that $\left|f_{n}(z)-f(z)\right|<\frac{\varepsilon}{A}$ for $n>N$, where A is the length of C. Then,

$$
\begin{aligned}
\left|\int_{C} f_{n}(z) d z-\int_{C} f(z) d z\right| & =\left|\int_{C}\left(f_{n}(z)-f(z)\right) d z\right| \\
& <\frac{\varepsilon}{A} A=\varepsilon
\end{aligned}
$$

whenever $n>N$.

Now suppose $\left(f_{n}\right)$ is a sequence of functions each analytic on some region D, and suppose the sequence converges uniformly on D to the function f. Then f is analytic. This result is in marked contrast to what happens with real functions-examples of uniformly convergent sequences of differentiable functions with a nondifferentiable limit abound in the real case. To see that this uniform limit is analytic, let $z_{0} \in D$, and let $S=\left\{z:\left|z-z_{0}\right|<r\right\} \subset D$. Now consider any simple closed curve $C \subset S$. Each f_{n} is analytic, and so $\int_{C} f_{n}(z) d z=0$ for every n. From the uniform convergence of $\left(f_{n}\right)$, we know that $\int_{C} f(z) d z$ is the limit of the sequence $\left(\int_{C} f_{n}(z) d z\right)$, and so $\int_{C} f(z) d z=0$. Morera's theorem now tells us that f is analytic on S, and hence at z_{0}. Truly a miracle.

Exercises

1. Prove that a sequence cannot have more than one limit. (We thus speak of the limit of a sequence.)
2. Give an example of a sequence that does not have a limit, or explain carefully why there is no such sequence.
3. Give an example of a bounded sequence that does not have a limit, or explain carefully why there is no such sequence.
4. Give a sequence $\left(f_{n}\right)$ of functions continuous on a set D with a limit that is not continuous.
5. Give a sequence of real functions differentiable on an interval which converges uniformly to a nondifferentiable function.
8.2 Series. A series is simply a sequence $\left(s_{n}\right)$ in which $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$. In other words, there is sequence $\left(a_{n}\right)$ so that $s_{n}=s_{n-1}+a_{n}$. The s_{n} are usually called the partial sums. Recall from Mrs. Turner's class that if the series $\left(\sum_{j=1}^{n} a_{j}\right)$ has a limit, then it must be true that $\lim _{n \rightarrow \infty}\left(a_{n}\right)=0$.

Consider a series $\left(\sum_{j=1}^{n} f_{j}(z)\right)$ of functions. Chances are this series will converge for some values of z and not converge for others. A useful result is the celebrated Weierstrass
M-test: Suppose $\left(M_{j}\right)$ is a sequence of real numbers such that $M_{j} \geq 0$ for all $j>J$, where J is some number., and suppose also that the series $\left(\sum_{j=1}^{n} M_{j}\right)$ converges. If for all $z \in D$, we have $\left|f_{j}(z)\right| \leq M_{j}$ for all $j>J$, then the series $\left(\sum_{j=1}^{n} f_{j}(z)\right)$ converges uniformly on D.

To prove this, begin by letting $\varepsilon>0$ and choosing $N>J$ so that

$$
\sum_{j=m}^{n} M_{j}<\varepsilon
$$

for all $n, m>N$. (We can do this because of the famous Cauchy criterion.) Next, observe that

$$
\left|\sum_{j=m}^{n} f_{j}(z)\right| \leq \sum_{j=m}^{n}\left|f_{j}(z)\right| \leq \sum_{j=m}^{n} M_{j}<\varepsilon .
$$

This shows that $\left(\sum_{j=1}^{n} f_{j}(z)\right)$ converges. To see the uniform convergence, observe that

$$
\left|\sum_{j=m}^{n} f_{j}(z)\right|=\left|\sum_{j=0}^{n} f_{j}(z)-\sum_{j=0}^{m-1} f_{j}(z)\right|<\varepsilon
$$

for all $z \epsilon D$ and $n>m>N$. Thus,

$$
\lim _{n \rightarrow \infty}\left|\sum_{j=0}^{n} f_{j}(z)-\sum_{j=0}^{m-1} f_{j}(z)\right|=\left|\sum_{j=0}^{\infty} f_{j}(z)-\sum_{j=0}^{m-1} f_{j}(z)\right| \leq \varepsilon
$$

for $m>N$.(The limit of a series $\left(\sum_{j=0}^{n} a_{j}\right)$ is almost always written as $\sum_{j=0}^{\infty} a_{j}$. .)

Exercises

6. Find the set D of all z for which the sequence $\left(\frac{z^{n}}{z^{n}-3^{n}}\right)$ has a limit. Find the limit.
7. Prove that the series $\left(\sum_{j=1}^{n} a_{j}\right)$ converges if and only if both the series $\left(\sum_{j=1}^{n} \operatorname{Re} a_{j}\right)$ and $\left(\sum_{j=1}^{n} \operatorname{Im} a_{j}\right)$ converge.
8. Explain how you know that the series $\left(\sum_{j=1}^{n}\left(\frac{1}{z}\right)^{j}\right)$ converges uniformly on the set $|z| \geq 5$.
8.3 Power series. We are particularly interested in series of functions in which the partial sums are polynomials of increasing degree:

$$
s_{n}(z)=c_{0}+c_{1}\left(z-z_{0}\right)+c_{2}\left(z-z_{0}\right)^{2}+\ldots+c_{n}\left(z-z_{0}\right)^{n} .
$$

(We start with $n=0$ for esthetic reasons.) These are the so-called power series. Thus, a power series is a series of functions of the form $\left(\sum_{j=0}^{n} c_{j}\left(z-z_{0}\right)^{j}\right)$.

Let's look first at a very special power series, the so-called Geometric series:

$$
\left(\sum_{j=0}^{n} z^{j}\right)
$$

Here

$$
\begin{aligned}
s_{n} & =1+z+z^{2}+\ldots+z^{n}, \text { and } \\
z s_{n} & =z+z^{2}+z^{3}+\ldots+z^{n+1} .
\end{aligned}
$$

Subtracting the second of these from the first gives us

$$
(1-z) s_{n}=1-z^{n+1} .
$$

If $z=1$, then we can't go any further with this, but I hope it's clear that the series does not have a limit in case $z=1$. Suppose now $z \neq 1$. Then we have

$$
s_{n}=\frac{1}{1-z}-\frac{z^{n+1}}{1-z}
$$

Now if $|z|<1$, it should be clear that $\lim \left(z^{n+1}\right)=0$, and so

$$
\lim \left(\sum_{j=0}^{n} z^{j}\right)=\lim s_{n}=\frac{1}{1-z}
$$

Or,

$$
\sum_{j=0}^{\infty} z^{j}=\frac{1}{1-z}, \text { for }|z|<1
$$

There is a bit more to the story. First, note that if $|z|>1$, then the Geometric series does not have a limit (why?). Next, note that if $|z| \leq \rho<1$, then the Geometric series converges
uniformly to $\frac{1}{1-z}$. To see this, note that

$$
\left(\sum_{j=0}^{n} \rho^{j}\right)
$$

has a limit and appeal to the Weierstrass M-test.

Clearly a power series will have a limit for some values of z and perhaps not for others. First, note that any power series has a limit when $z=z_{0}$. Let's see what else we can say. Consider a power series $\left(\sum_{j=0}^{n} c_{j}\left(z-z_{0}\right)^{j}\right)$. Let

$$
\lambda=\lim \sup \left(\sqrt[i]{\left|c_{j}\right|}\right)
$$

(Recall from $6^{\text {th }}$ grade that $\lim \sup \left(a_{k}\right)=\lim \left(\sup \left\{a_{k}: k \geq n\right\}\right.$.) Now let $R=\frac{1}{\lambda}$. (We shall say $R=0$ if $\lambda=\infty$, and $R=\infty$ if $\lambda=0$.) We are going to show that the series converges uniformly for all $\left|z-z_{0}\right| \leq \rho<R$ and diverges for all $\left|z-z_{0}\right|>R$.

First, let's show the series does not converge for $\left|z-z_{0}\right|>R$. To begin, let k be so that

$$
\frac{1}{\left|z-z_{0}\right|}<k<\frac{1}{R}=\lambda .
$$

There are an infinite number of c_{j} for which $\sqrt[i]{\left|c_{j}\right|}>k$, otherwise $\lim \sup \left(\sqrt[i]{\left|c_{j}\right|}\right) \leq k$. For each of these c_{j} we have

$$
\left|c_{j}\left(z-z_{0}\right)^{j}\right|=\left(\sqrt[j]{\left|c_{j}\right|}\left|z-z_{0}\right|\right)^{j}>\left(k\left|z-z_{0}\right|\right)^{j}>1 .
$$

It is thus not possible for $\lim _{n \rightarrow \infty}\left|c_{n}\left(z-z_{0}\right)^{n}\right|=0$, and so the series does not converge.

Next, we show that the series does converge uniformly for $\left|z-z_{0}\right| \leq \rho<R$. Let k be so that

$$
\lambda=\frac{1}{R}<k<\frac{1}{\rho} .
$$

Now, for j large enough, we have $\sqrt[i]{\left|c_{j}\right|}<k$. Thus for $\left|z-z_{0}\right| \leq \rho$, we have

$$
\left|c_{j}\left(z-z_{0}\right)^{j}\right|=\left(\sqrt[i]{\left|c_{j}\right|}\left|z-z_{0}\right|\right)^{j}<\left(k\left|z-z_{0}\right|\right)^{j}<(k \rho)^{j} .
$$

The geometric series $\left(\sum_{j=0}^{n}(k \rho)^{j}\right)$ converges because $k \rho<1$ and the uniform convergence of $\left(\sum_{j=0}^{n} c_{j}\left(z-z_{0}\right)^{j}\right)$ follows from the M-test.

Example

Consider the series $\left(\sum_{j=0}^{n} \frac{1}{j!} z^{j}\right)$. Let's compute $R=1 / \lim \sup \left(\sqrt[i]{\left|c_{j}\right|}\right)=\lim \sup (\sqrt[i]{j!})$. Let K be any positive integer and choose an integer m large enough to insure that $2^{m}>\frac{K^{2 K}}{(2 K)!}$. Now consider $\frac{n!}{K^{n}}$, where $n=2 K+m$:

$$
\begin{aligned}
\frac{n!}{K^{n}} & =\frac{(2 K+m)!}{K^{2 K+m}}=\frac{(2 K+m)(2 K+m-1) \ldots(2 K+1)(2 K)!}{K^{m} K^{2 K}} \\
& >2^{m} \frac{(2 K)!}{K^{2 K}}>1
\end{aligned}
$$

Thus $\sqrt[n]{n!}>K$. Reflect on what we have just shown: given any number K, there is a number n such that $\sqrt[n]{n!}$ is bigger than it. In other words, $R=\lim \sup (\sqrt[i]{j!})=\infty$, and so the series $\left(\sum_{j=0}^{n} \frac{1}{j!} z^{j}\right)$ converges for all z.

Let's summarize what we have. For any power series $\left(\sum_{j=0}^{n} c_{j}\left(z-z_{0}\right)^{j}\right)$, there is a number $R=\frac{1}{\lim \sup \left(\sqrt[3]{\left|c_{j}\right|}\right)}$ such that the series converges uniformly for $\left|z-z_{0}\right| \leq \rho<R$ and does not converge for $\left|z-z_{0}\right|>R$. (Note that we may have $R=0$ or $R=\infty$.) The number R is called the radius of convergence of the series, and the set $\left|z-z_{0}\right|=R$ is called the circle of convergence. Observe also that the limit of a power series is a function analytic inside the circle of convergence (why?).

Exercises

9. Suppose the sequence of real numbers $\left(\alpha_{j}\right)$ has a limit. Prove that

$$
\lim \sup \left(\alpha_{j}\right)=\lim \left(\alpha_{j}\right)
$$

For each of the following, find the set D of points at which the series converges:
10. $\left(\sum_{j=0}^{n} j!z^{j}\right)$.
11. $\left(\sum_{j=0}^{n} j z^{j}\right)$.
12. $\left(\sum_{j=0}^{n} \frac{j^{2}}{3^{j}} z^{j}\right)$.
13. $\left(\sum_{j=0}^{n} \frac{(-1)^{j}}{2^{2 j}(j!)^{2}} z^{2 j}\right)$
8.4 Integration of power series. Inside the circle of convergence, the limit

$$
S(z)=\sum_{j=0}^{\infty} c_{j}\left(z-z_{0}\right)^{j}
$$

is an analytic function. We shall show that this series may be integrated "term-by-term"-that is, the integral of the limit is the limit of the integrals. Specifically, if C is any contour inside the circle of convergence, and the function g is continuous on C, then

$$
\int_{C} g(z) S(z) d z=\sum_{j=0}^{\infty} c_{j} \int_{C} g(z)\left(z-z_{0}\right)^{j} d z
$$

Let's see why this. First, let $\varepsilon>0$. Let M be the maximum of $|g(z)|$ on C and let L be the length of C. Then there is an integer N so that

$$
\left|\sum_{j=n}^{\infty} c_{j}\left(z-z_{0}\right)^{j}\right|<\frac{\varepsilon}{M L}
$$

for all $n>N$. Thus,

$$
\left|\int_{C}\left(g(z) \sum_{j=n}^{\infty} c_{j}\left(z-z_{0}\right)^{j}\right) d z\right|<M L \frac{\varepsilon}{M L}=\varepsilon
$$

Hence,

$$
\begin{aligned}
\left|\int_{C} g(z) S(z) d z-\sum_{j=0}^{n-1} c_{j} \int_{C} g(z)\left(z-z_{0}\right)^{j} d z\right| & =\left|\int_{C}\left(g(z) \sum_{j=n}^{\infty} c_{j}\left(z-z_{0}\right)^{j}\right) d z\right| \\
& <\varepsilon,
\end{aligned}
$$

and we have shown what we promised.

8.5 Differentiation of power series. Again, let

$$
S(z)=\sum_{j=0}^{\infty} c_{j}\left(z-z_{0}\right)^{j} .
$$

Now we are ready to show that inside the circle of convergence,

$$
S^{\prime}(z)=\sum_{j=1}^{\infty} j c_{j}\left(z-z_{0}\right)^{j-1} .
$$

Let z be a point inside the circle of convergence and let C be a positive oriented circle centered at z and inside the circle of convergence. Define

$$
g(s)=\frac{1}{2 \pi i(s-z)^{2}}
$$

and apply the result of the previous section to conclude that

$$
\begin{aligned}
\int_{C} g(s) S(s) d s & =\sum_{j=0}^{\infty} c_{j} \int_{C} g(s)\left(s-z_{0}\right)^{j} d s, \text { or } \\
\frac{1}{2 \pi i} \int_{C} \frac{S(s)}{(s-z)^{2}} d s & =\sum_{j=0}^{\infty} c_{j} \frac{1}{2 \pi i} \int_{C} \frac{\left(s-z_{0}\right)^{j}}{(s-z)^{2}} d s . \text { Thus } \\
S^{\prime}(z) & =\sum_{j=0}^{\infty} j c_{j}\left(z-z_{0}\right)^{j-1},
\end{aligned}
$$

as promised!

Exercises

14. Find the limit of

$$
\left(\sum_{j=0}^{n}(j+1) z^{j}\right) .
$$

For what values of z does the series converge?
15. Find the limit of

$$
\left(\sum_{j=1}^{n} \frac{z^{j}}{j}\right)
$$

For what values of z does the series converge?
16. Find a power series $\left(\sum_{j=0}^{n} c_{j}(z-1)^{j}\right)$ such that

$$
\frac{1}{z}=\sum_{j=0}^{\infty} c_{j}(z-1)^{j}, \text { for }|z-1|<1 .
$$

17. Find a power series $\left(\sum_{j=0}^{n} c_{j}(z-1)^{j}\right)$ such that
$\log z=\sum_{j=0}^{\infty} c_{j}(z-1)^{j}$, for $|z-1|<1$.
