
Chapter Nine

Taylor and Laurent Series

9.1. Taylor series. Suppose f is analytic on the open disk |z  z0 |  r. Let z be any point in
this disk and choose C to be the positively oriented circle of radius , where
|z  z0 |    r. Then for sC we have
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since | zz0sz0 |  1. The convergence is uniform, so we may integrate
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We have thus produced a power series having the given analytic function as a limit:
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This is the celebrated Taylor Series for f at z  z0.

We know we may differentiate the series to get
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and this one converges uniformly where the series for f does. We can thus differentiate
again and again to obtain
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Hence,
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But we also know that
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This gives us
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This is the famous Generalized Cauchy Integral Formula. Recall that we previously
derived this formula for n  0 and 1.

What does all this tell us about the radius of convergence of a power series? Suppose we
have
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and the radius of convergence is R. Then we know, of course, that the limit function f is
analytic for |z  z0 |  R. We showed that if f is analytic in |z  z0 |  r, then the series
converges for |z  z0 |  r. Thus r  R, and so f cannot be analytic at any point z for which
|z  z0 |  R. In other words, the circle of convergence is the largest circle centered at z0
inside of which the limit f is analytic.
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Example

Let fz  expz  ez. Then f0  f 0  fn0  1, and the Taylor series for f
at z0  0 is
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and this is valid for all values of z since f is entire. (We also showed earlier that this
particular series has an infinite radius of convergence.)

Exercises

1. Show that for all z,

ez  e
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1
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j.

2.What is the radius of convergence of the Taylor series 
j0

n
cjzj for tanh z ?

3. Show that

1
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for |z  i|  2 .

4. If fz  1
1z , what is f

10i ?

5. Suppose f is analytic at z  0 and f0  f 0  f 0  0. Prove there is a function g
analytic at 0 such that fz  z3gz in a neighborhood of 0.

6. Find the Taylor series for fz  sin z at z0  0.

7. Show that the function f defined by
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fz 
sin z
z for z  0
1 for z  0

is analytic at z  0, and find f 0.

9.2. Laurent series. Suppose f is analytic in the region R1  |z  z0 |  R2, and let C be a
positively oriented simple closed curve around z0 in this region. (Note: we include the
possiblites that R1 can be 0, and R2  .) We shall show that for z  C in this region
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where
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The sum of the limits of these two series is frequently written
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This recipe for fz is called a Laurent series, although it is important to keep in mind that
it is really two series.
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Okay, now let’s derive the above formula. First, let r1 and r2 be so that
R1  r1  |z  z0 |  r2  R2 and so that the point z and the curve C are included in the
region r1  |z  z0 |  r2. Also, let  be a circle centered at z and such that  is included in
this region.

Then fs
sz is an analytic function (of s) on the region bounded by C1,C2, and , where C1 is

the circle |z|  r1 and C2 is the circle |z|  r2. Thus,
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(All three circles are positively oriented, of course.) But 
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2ifz  
C2

fs
s  z ds  

C1

fs
s  z ds.

Look at the first of the two integrals on the right-hand side of this equation. For sC2, we
have |z  z0 |  |s  z0 |, and so
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Hence,
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For the second of these two integrals, note that for sC1 we have |s  z0 |  |z  z0 |, and so
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As before,
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Putting this altogether, we have the Laurent series:
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Example
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Let f be defined by

fz  1
zz  1 .

First, observe that f is analytic in the region 0  |z|  1. Let’s find the Laurent series for f
valid in this region. First,
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z  1 .

From our vast knowledge of the Geometric series, we have
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Now let’s find another Laurent series for f, the one valid for the region 1  |z|  .
First,
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Now since | 1z |  1, we have
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and so
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Exercises

8. Find two Laurent series in powers of z for the function f defined by
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fz  1
z21  z

and specify the regions in which the series converge to fz.

9. Find two Laurent series in powers of z for the function f defined by

fz  1
z1  z2

and specify the regions in which the series converge to fz.

10. Find the Laurent series in powers of z  1 for fz  1
z in the region 1  |z  1|  .
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