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1 Introduction

These notes supplement a freely downloadable book Complex Analysis by George
Cain (henceforth referred to as Cain’s notes), that I served as a primary text
for an undergraduate level course in complex analysis. Throughout these notes
I will make occasional references to results stated in these notes. The aim of
my notes is to provide a few examples of applications of the residue theorem.
The main goal is to illustrate how this theorem can be used to evaluate various
types of integrals of real valued functions of real variable.

Following Sec. 10.1 of Cain’s notes, let us recall that if C is a simple, closed
contour and f is analytic within the region bounded by C except for finitely
many points z0, z1, . . . , zk then∫

C

f(z)dz = 2πi
k∑

j=0

Resz=zj
f(z),

where Resz=af(z) is the residue of f at a.

2 Evaluation of Real-Valued Integrals.

2.1 Definite integrals involving trigonometric functions

We begin by briefly discussing integrals of the form∫ 2π

0

F (sin at, cos bt)dt. (1)

Our method is easily adaptable for integrals over a different range, for example
between 0 and π or between ±π.

Given the form of an integrand in (1) one can reasonably hope that the
integral results from the usual parameterization of the unit circle z = eit, 0 ≤
t ≤ 2π. So, let’s try z = eit. Then (see Sec. 3.3 of Cain’s notes),

cos bt =
eibt + e−ibt

2
=

zb + 1/zb

2
, sin at =

eiat − e−iat

2i
=

za − 1/za

2i
.

Moreover, dz = ieitdt, so that

dt =
dz

iz
.

Putting all of this into (1) yields∫ 2π

0

F (sin at, cos bt)dt =
∫

C

F

(
za − 1/za

2i
,
zb + 1/zb

2

)
dz

iz
,

where C is the unit circle. This integral is well within what contour integrals are
about and we might be able to evaluate it with the aid of the residue theorem.
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It is a good moment to look at an example. We will show that∫ 2π

0

cos 3t

5− 4 cos t
dt =

π

12
. (2)

Following our program, upon making all these substitutions, the integral in (1)
becomes ∫

C

(z3 + 1/z3)/2
5− 4(z + 1/z)/2

dz

iz
=

1
i

∫
C

z6 + 1
z3(10z − 4z2 − 4)

dz

= − 1
2i

∫
C

z6 + 1
z3(2z2 − 5z + 2)

dz

= − 1
2i

∫
C

z6 + 1
z3(2z − 1)(z − 2)

dz.

The integrand has singularities at z0 = 0, z1 = 1/2, and z2 = 2, but since the
last one is outside the unit circle we only need to worry about the first two.
Furthermore, it is clear that z0 = 0 is a pole of order 3 and that z1 = 1/2 is a
simple pole. One way of seeing it, is to notice that within a small circle around
z0 = 0 (say with radius 1/4) the function

z6 + 1
(2z − 1)(z − 2)

is analytic and so its Laurent series will have all coefficients corresponding to
the negative powers of z zero. Moreover, since its value at z0 = 0 is

06 + 1
(2 · 0− 1)(0− 2)

=
1
2
,

the Laurent expansion of our integrand is

1
z3

z6 + 1
(2z − 1)(z − 2)

=
1
z3

(
1
2

+ a1z + . . .

)
=

1
2

1
z3

+
a1

z2
+ . . . ,

which implies that z0 = 0 is a pole of order 3. By a similar argument (using a
small circle centered at z1 = 1/2) we see that z1 = 1/2 is a simple pole. Hence,
the value of integral in (2) is

2πi

(
Resz=0

(
z6 + 1

z3(2z − 1)(z − 2)

)
+ Resz=1/2

(
z6 + 1

z3(2z − 1)(z − 2)

))
.

The residue at a simple pole z1 = 1/2 is easy to compute by following a discus-
sion preceding the second example in Sec. 10.2 in Cain’s notes:

z6 + 1
z3(2z − 1)(z − 2)

=
z6 + 1

z3(2z2 − 5z + 2)
=

z6 + 1
2z5 − 5z4 + 2z3
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is of the form p(z)/q(z) with p(1/2) = 2−6 + 1 6= 0 and q(1/2) = 0. Now,
q′(z) = 10z4 − 20z3 + 6z2, so that q′(1/2) = 10/24 − 20/23 + 6/22 = −3/23.
Hence, the residue at z1 = 1/2 is

p(1/2)
q′(1/2)

= − (26 + 1) · 23

26 · 3
= −65

24
.

The residue at a pole of degree 3, z0 = 0, can be obtained in various ways.
First, we can take a one step further a method we used to determine the degree
of that pole: since on a small circle around 0,

z6 + 1
(2z − 1)(z − 2)

=
z6

(2z − 1)(z − 2)
+

1
(2z − 1)(z − 2)

. (3)

is analytic, the residue of our function will be the coefficient corresponding to
z2 of Taylor expansion of the function given in (3). The first term will not
contribute as its smallest non-zero coefficient is in front of z6 so we need to
worry about the second term only. Expand each of the terms 1/(2z − 1) and
1/(z − 2) into its Taylor series, and multiply out. As long as |2z| < 1 we get

1
(2z − 1)(z − 2)

=
1
2
· 1
1− 2z

· 1
1− z/2

=
1
2
(
1 + 2z + 22z2 + . . .

)
·
(

1 +
z

2
+

z2

22
+ . . .

)
=

1
2

(
1 + A1z + 2 · 1

2
z2 +

1
4
z2 + 4z2 + . . .

)
=

1
2

(
1 + A1z +

(
5 +

1
4

)
z2 + . . .

)
=

1
2

+
a1

2
z +

21
8

z2 + . . .

so that the residue at z0 = 0 is 21/8 (from the calculations we see that A1 =
2 + 1/2, but since our interest is the coefficient in front of z2 we chose to leave
A1 unspecified). The same result can be obtained by computing the second
derivative (see Sec. 10.2 of Cain’s notes) of

1
2!

z3 z6 + 1
z3(2z − 1)(z − 2)

,

and evaluating at z = 0. Alternatively, one can open Maple session and type:

residue((z^6+1)/z^3/(2*z-1)/(z-2),z=0);

to get the same answer again.
Combining all of this we get that the integral in (2) is

− 1
2i

∫
C

z6 + 1
z3(2z − 1)(z − 2)

dz = − 1
2i

(2πi)
(

21
8
− 65

24

)
= π

65− 63
24

=
π

12
,

as required.
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2.2 Evaluation of improper integrals involving rational func-
tions

Recall that improper integral ∫ ∞

0

f(x)dx

is defined as a limit

lim
R→∞

∫ R

0

f(x)dx,

provided that this limit exists. When the function f(x) is even (i.e. f(x) =
f(−x), for x ∈ R) one has∫ R

0

f(x)dx =
1
2

∫ R

−R

f(x)dx,

and the above integral can be thought of as an integral over a part of a contour
CR consisting of a line segment along the real axis between −R and R. The
general idea is to “close”the contour (often by using one of the semi-circles
with radius R centered at the origin), evaluate the resulting integral by means
of residue theorem, and show that the integral over the “added”part of CR

asymptotically vanishes as R → 0. As an example we will show that∫ ∞

0

dx

(x2 + 1)2
=

π

4
. (4)

Consider a function f(z) = 1/(z2 + 1)2. This function is not analytic at z0 =
i (and that is the only singularity of f(z)), so its integral over any contour
encircling i can be evaluated by residue theorem. Consider CR consisting of the
line segment along the real axis between −R ≤ x ≤ R and the upper semi-circle
AR := {z = Reit, 0 ≤ t ≤ π}. By the residue theorem∫

CR

dz

(z2 + 1)2
= 2πiResz=i

(
1

(z2 + 1)2

)
.

The integral on the left can be written as∫ R

−R

dz

(z2 + 1)2
+
∫

AR

dz

(z2 + 1)2
.

Parameterization of the line segment is γ(t) = t + i · 0, so that the first integral
is just ∫ R

−R

dx

(x2 + 1)2
= 2

∫ R

0

dx

(x2 + 1)2
.

Hence, ∫ R

0

dx

(x2 + 1)2
= πiResz=i

(
1

(z2 + 1)2

)
− 1

2

∫
AR

dz

(z2 + 1)2
. (5)
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Since
1

(z2 + 1)2
=

1
(z − i)2(z + i)2

,

and 1/(z + i)2 is analytic on the upper half-plane, z = i is a pole of order 2.
Thus (see Sec. 10.2 of Cain’s notes), the residue is

d

dz

(
(z − i)2

1
(z − i)2(z + i)2

)
z=i

=
(

−2
(z + i)3

)
z=i

= − 2
(2i)3

= − 1
4i3

=
1
4i

which implies that the first term on the right-hand side of (5) is

πi

4i
=

π

4
.

Thus the evaluation of (4) will be complete once we show that

lim
R→∞

∫
AR

dz

(z2 + 1)2
= 0. (6)

But this is straightforward; for z ∈ AR we have

|z2 + 1| ≥ |z|2 − 1 = R2 − 1,

so that for R > 2 ∣∣∣∣ 1
(z2 + 1)2

∣∣∣∣ ≤ 1
(R2 − 1)2

.

Using our favorite inequality∣∣∣∣∫
C

g(z)dz

∣∣∣∣ ≤ M · length(C), (7)

where |g(z)| ≤ M for z ∈ C, and observing that length(AR) = πR we obtain∣∣∣∣∫
AR

dz

(z2 + 1)2

∣∣∣∣ ≤ πR

(R2 − 1)2
−→ 0,

as R →∞. This proves (6) and thus also (4).

2.3 Improper integrals involving trigonometric and ratio-
nal functions.

Integrals like one we just considered may be “spiced up”to allow us to handle
an apparently more complicated integrals with very little extra effort. We will
illustrate it by showing that∫ ∞

−∞

cos 3x

(x2 + 1)2
dx =

2π

e3
.
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We keep the same function 1/(x2 + 1)2, just to illustrate the main difference.
This time we consider the function e3izf(z), where f(z) is, as before 1/(z2+1)2.
By following the same route we are led to∫ R

−R

e3xi

(x2 + 1)2
dx = 2πiResz=i(f(z)e3zi−

∫
AR

f(z)e3zidz =
2π

e3
−
∫

AR

f(z)e3zidz.

At this point it only remains to use the fact that the real parts of both sides
must the same, write e3xi = cos 3x + i sin 3x, and observe that the real part of
the left-hand side is exactly the integral we are seeking. All we need to do now
is to show that the real part of the integral over AR vanishes as R →∞. But,
since for a complex number w, |Re(w)| ≤ |w| we have∣∣∣∣Re

(∫
AR

f(z)e3izdz

)∣∣∣∣ ≤ ∣∣∣∣∫
AR

f(z)e3izdz

∣∣∣∣ ,
and the same bound as in (7) can be established since on AR we have

|e3iz| = |e3i(x+iy)| = |e−3ye3xi| = e−3y ≤ 1,

since AR is in the upper half-plane so that y ≥ 0.

Remark.

(i) This approach generally works for many integrals of the form∫ ∞

−∞
f(z) cos azdz and

∫ ∞

−∞
f(z) sin azdz,

where f(z) is a rational function (ratio of two polynomials), where degree
of a polynomial in the denominator is larger than that of a polynomial
in the numerator (although in some cases working out the bound on the
integral over AR may be more tricky than in the above example). The
following inequality, known as Jordan’s inequality, is often helpful (see
Sec. 2.4 for an illustration as well as a proof)∫ π

0

e−R sin tdt <
π

R
. (8)

(ii) The integrals involving sine rather than cosine are generally handled by
comparing the imaginary parts. The example we considered would give∫ ∞

−∞

sin 3x

(x2 + 1)2
dx = 0,

but that is trivially true since the integrand is an odd function, and,
clearly, the improper integral∫ ∞

0

sin 3x

(x2 + 1)2
dx

converges. For a more meaningful examples see Exercises 4-6 at the end.
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2.4 One more example of the same type.

Here we will show that ∫ ∞

0

sinx

x
dx =

π

2
. (9)

This integral is quite useful (e.g. in Fourier analysis and probability) and has
an interesting twist, namely a choice of a contour (that aspect is, by the way,
one more thing to keep in mind; clever choice of a contour may make wonders).

Based on our knowledge form the previous section we should consider f(z) =
eiz/z and try to integrate along our usual contour CR considered in Sections 2.2
and 2.3. The only problem is that our function f(z) has a singularity on the
contour, namely at z = 0. To avoid that problem we will make a small detour
around z = 0. Specifically, consider pick a (small) ρ > 0 and consider a contour
consisting of the arc AR that we considered in the last two sections followed
by a line segment along a real axis between −R and −ρ, followed by an upper
semi-circle centered at 0 with radius ρ and, finally, a line segment along the
positive part of the real exit from ρ to R (draw a picture to see what happens).
We will call this contour BR,ρ and we denote the line segments by L− and L+,
respectively and the small semi-circle by Aρ. Since our function is analytic with
BR,ρ its integral along this contour is 0. That is∫

AR

eiz

z
dz = 0 +

∫ −ρ

−R

eix

x
dx +

∫
Aρ

eiz

z
dz +

∫ R

ρ

eix

x
dx,

Since ∫ −ρ

−R

eix

x
dx = −

∫ R

ρ

e−ix

x
dx,

by combining the second and the fourth integral we obtain∫ R

ρ

eix − e−ix

x
dx +

∫
AR

eiz

z
dz +

∫
Aρ

eiz

z
dz = 0.

Since the integrand in the leftmost integral is

2i
eix − e−ix

2ix
= 2i

sinx

x
,

we obtain

2i

∫ R

ρ

sinx

x
dx = −

∫
AR

eiz

z
dz −

∫
Aρ

eiz

z
dz = 0,

or upon dividing by 2i∫ R

ρ

sinx

x
dx =

i

2

(∫
AR

eiz

z
dz +

∫
Aρ

eiz

z
dz

)
.

The plan now is to show that the integral over AR vanishes as R →∞ and that

lim
ρ→0

∫
Aρ

eiz

z
dz = −πi. (10)
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To justify this last statement use the usual parameterization of Aρ: z = ρeit,
0 ≤ t ≤ π. Then dz = iρeitdt and notice (look at your picture) that the integral
over Aρ is supposed to be clockwise (i.e. in the negative direction. Hence,

−
∫

Aρ

eiz

z
dz =

∫ π

0

eiρeit

iρeit

ρeit
dt = i

∫ π

0

eiρeit

dt.

Thus to show (10) it suffices to show that

lim
ρ→0

∫ π

0

eiρeit

dt = π.

To this end let us look at∣∣∣∣∫ π

0

eiρeit

dt− π

∣∣∣∣ = ∣∣∣∣∫ π

0

eiρeit

dt−
∫ π

0

dt

∣∣∣∣ = ∣∣∣∣∫ π

0

(
eiρeit

− 1
)

dt

∣∣∣∣ .
We will want to use once again inequality (7). Since the length of the curve is
π we only need to show that

|eiρeit

− 1| −→ 0, as ρ → 0. (11)

But we have

|eiρeit

− 1| = |eiρ(cos t+i sin t) − 1| = |e−ρ sin teiρ cos t − 1|
= |e−ρ sin teiρ cos t − e−ρ sin t + e−ρ sin t − 1|
≤ e−ρ sin t|eiρ cos t − 1|+ |e−ρ sin t − 1|
≤ |eiρ cos t − 1|+ |e−ρ sin t − 1|.

For 0 ≤ t ≤ π, sin t ≥ 0 so that e−ρ sin t ≤ 1 and thus the second absolute value
is actually equal to 1 − e−ρ sin t which is less than ρ sin t, since for any real u,
1− u ≤ e−u (just draw the graphs of these two functions).

We will now bound |eiρ cos t − 1|. For any real number v we have

|eiv − 1|2 = (cos v − 1)2 + sin2 v = cos2 v + sin2 v − 2 cos v + 1 = 2(1− cos v).

We will show that

1− cos v ≤ v2

2
(12)

If we knew that, then (11) would follow since we would have

|eiρeit

− 1| ≤ |eiρ cos t − 1|+ |e−ρ sin t − 1| ≤ ρ(| cos t|+ | sin t|) ≤ 2ρ → 0.

But the proof of (12) is an easy exercise in calculus: let

h(v) :=
v2

2
+ cos v − 1.
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Than (12) is equivalent to

h(v) ≥ 0 for v ∈ R.

Since h(0) = 0, it suffices to show that h(v) has a global minimum at v = 0.
But

h′(v) = v − sin v so that h′(0) = 0, and h′′(v) = 1− cos v ≥ 0.

That means that v = 0 is a critical point and h(v) is convex. Thus, it has to be
the mininimum of h(v).

All that remains to show is that

lim
R→∞

∫
AR

eiz

z
dz = 0. (13)

This is the place where Jordan’s inequality (8) comes into picture. Going once
again through the routine of changing variables to z = Reit, 0 ≤ t ≤ π, we
obtain ∣∣∣∣∫

AR

eiz

z
dz

∣∣∣∣ =
∣∣∣∣i∫ π

0

eiReit

dt

∣∣∣∣ ≤ ∫ π

0

∣∣∣eiR(cos t+i sin t)
∣∣∣ dt

=
∫ π

0

∣∣eiR cos t
∣∣ · e−R sin tdt ≤

∫ π

0

e−R sin tdt ≤ π

R
,

where the last step follows from Jordan’s inequality (8). It is now clear that
(13) is true.

It remains to prove (8). To this end, first note that∫ π

0

e−R sin tdt = 2
∫ π/2

0

e−R sin tdt.

That’s because the graph of sin t and (thus also of e−R sin t) is symmetric about
the vertical line at π/2. Now, since the function sin t is concave between 0 ≤
t ≤ π, its graph is above the graph of a line segment joining (0, 0) and (π/2, 1);
in other words

sin t ≥ 2t

π
.

Hence ∫ π/2

0

e−R sin tdt ≤
∫ π/2

0

e−
2R
π tdt =

π

2R

(
1− e−R

)
≤ π

2R

which proves Jordan’s inequality.

3 Summation of series.

As an example we will show that
∞∑

n=1

1
n2

=
π2

6
, (14)
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but as we will see the approach is fairly universal.
Let for a natural number N CN be a positively oriented square with vertices

at (±1± i)(N + 1/2) and consider the integral∫
CN

cos πz

z2 sinπz
dz. (15)

Since sinπz = 0 for z = 0,±1,±2, . . . the integrand has simple poles at
±1,±2, . . . and a pole of degree three at 0. The residues at the simple poles are

lim
z→k

(z − k) cos πz

z2 sinπz
=

cos πk

k2
lim
z→k

π(z − k)
π sin(π(z − k))

=
1

πk2
.

The residue at the triple pole z = 0 is −π/3. To see that you can either ask
Maple to find it for you by typing:

residue(cos(Pi*z)/sin(Pi*z)/z^2,z=0);

in your Maple session or compute the second derivative (see Sec. 10.2 of Cain’s
notes again) of

1
2!

z3 cos πz

z2 sinπz
=

1
2

z cos πz

sinπz
,

and evaluate at z = 0, or else use the series expansions for the sine and cosine,
and figure out from there, what’ s the coefficient in front of 1/z in the Laurent
series for cos πz

z2 sinπz

around z0 = 0. Applying residue theorem, and collecting the poles within the
contour CN we get∫

CN

cos πz

z2 sinπz
dz = 2πi

(
−π

3
+

N∑
k=1

1
πk2

+
−N∑

k=−1

1
πk2

)
= 2πi

(
−π

3
+ 2

N∑
k=1

1
πk2

)
.

The next step is to show that as N → ∞ the integral on the left converges
to 0. Once this is accomplished, we could pass to the limit on the right hand
side as well, obtaining

lim
N→∞

(
2
π

N∑
k=1

1
k2

)
=

π

3
,

which is equivalent to (14).
In order to show that the integral in (15) converges to 0 as N →∞, we will

bound ∣∣∣∣∫
CN

cos πz

z2 sinπz
dz

∣∣∣∣
using our indispensable inequality (7).
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First, observe that each side of CN has length 2N + 1 so that the length of
the contour CN is bounded by 8N +4 = O(N). On the other hand, for z ∈ CN ,

|z| ≥ N +
1
2
≥ N,

so that ∣∣∣∣ 1
z2

∣∣∣∣ ≤ 1
N2

,

so that it would be (more than) enough to show that cos πz/ sinπz is bounded
on CN by a constant independent of N . By Exercise 9 from Cain’s notes

| sin z|2 = sin2 x + sinh2 y, | cos z|2 = cos2 x + sinh2 y,

where z = x + iy. Hence∣∣∣cos πz

sinπz

∣∣∣2 =
cos2 πx + sinh2 πy

sin2 πx + sinh2 πy
=

cos2 πx

sin2 πx + sinh2 πy
+

sinh2 πy

sin2 πx + sinh2 πy

≤ cos2 πx

sin2 πx + sinh2 πy
+ 1.

On the vertical lines of the contour CN x = ±(N + 1/2) so that cos(πx) = 0
and sin(πx) = ±1. Hence the first term above is 0. We will show that on the
horizontal lines the absolute value of sinhπy is exponentially large, thus making
the first term exponentially small since sine and cosine are bounded functions.
For t > 0 we have

sinh t =
et − e−t

2
≥ et − 1

2
.

Similarly, for t < 0

sinh t =
et − e−t

2
≤ 1− e−t

2
= −e−t − 1

2
,

so that, in either case

| sinh t| ≥ e|t| − 1
2

.

Since on the upper horizontal line |y| = N + 1/2 we obtain

| sinhπy| ≥ eπ(N+1/2) − 1
2

→∞,

as N →∞. All of this implies that there exists a positive constant K such that
for all N ≥ 1 and all for z ∈ CN

|cos πz

sinπz
| ≤ K.

Hence, we conclude that∣∣∣∣∫
CN

cos πz

z2 sinπz
dz

∣∣∣∣ ≤ K
8N + 4

N2
,
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which converges to 0 as N →∞. This establishes (14).
The above argument is fairly universal and applies generally to the sums of

the form
∞∑

n=−∞
f(n).

Sums from 0 (or 1) to infinity are then often handled by using a symmetry of
f(n) or similarly simple observations. The crux of the argument is the following
observation:

Proposition 3.1 Under mild assumptions on f(z),

∞∑
n=−∞

f(n) = −π
∑

Res
(
f(z)

cos πz

sinπz

)
,

where the sum extends over the poles of f(z).

In our example we just took f(z) = 1/z2.
Variations of the above argument allow us to handle other sums. For exam-

ple, we have

Proposition 3.2 Under mild assumptions on f(z),

∞∑
n=−∞

(−1)nf(n) = −π
∑

Res
(

f(z)
sinπz

)
,

where the sum extends over the poles of f(z).
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4 Exercises.

1. Evaluate
∫ ∞

0

2x2 − 1
x4 + 5x2 + 4

dx. Answer: π/4.

2. Evaluate
∫ ∞

−∞

x

(x2 + 1)(x2 + 2x + 2)
dx. Answer: −π/5.

3. Evaluate
∫ ∞

0

dx

x4 + 1
. Answer:

π

2
√

2
.

4. Evaluate
∫ ∞

−∞

sinx

x2 + 4x + 5
dx. Answer: −π

e
sin 2.

5. Evaluate
∫ ∞

−∞

x sinx

x4 + 4
dx. Answer:

π

2e
sin 1.

6. Evaluate
∫ ∞

−∞

x sinπx

x2 + 2x + 5
dx. Answer: −πe−2π.

7. Evaluate
∫ π

−π

dt

1 + sin2 t
. Answer:

√
2π.

8. Evaluate
∫ 2π

0

cos2 3x

5− 4 cos 2x
dx. Answer:

3
8
π.

9. Show that
∞∑

n=1

1
n4

=
π4

90
.

10. Use a suggestion of Proposition 3.2 to show that
∞∑

n=1

(−1)n+1

n2
=

π2

12
.
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