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Abstract. We consider the following problem. A deck of 2n cards labeled consecutively
from 1 on top to 2n on bottom is face down on the table. The deck is given k dovetail shuffles
and placed back on the table, face down. A guesser tries to guess at the cards one at a time,
starting from top. The identity of the card guessed at is not revealed, nor is the guesser told
whether a particular guess was correct or not. The goal is to maximize the number of correct
guesses. We show that for k ≥ 2 log

2
(2n) + 1 the best strategy is to guess card 1 for the first

half of the deck and card 2n for the second half. This result can be interpreted as indicating
that it suffices to perform the order of log

2
(2n) shuffles to obtain a well mixed deck, a fact

proved by Bayer and Diaconis [3]. We also show that if k = c log
2
(2n) with 1 < c < 2 then

the above guessing strategy is not the best.

1. Introduction

Consider a deck of n cards and label the possible cutting places of the deck by 0, 1, . . . , n,
starting from top. A dovetail shuffle (or riffle shuffle) consists of (1) cutting the deck at
a position selected at random according to the binomial distribution and (2) interleaving
the two resulting decks at random, according to the uniform distribution on all possible
interleavings.

This mathematical model for shuffling was introduced by E. Gilbert and C. Shannon in
unpublished work at Bell Labs in 1956. It was further developed by J. Reeds in unpublished
work in 1976. The first published study is Aldous [1] who sketched an argument that
(3/2) log2 n shuffles suffice to mix up n cards. Aldous and Diaconis [2] gave a careful proof
that 2 log2 n shuffles are necessary and suffice for separation distance. Diaconis [4] gives
a practical analysis showing that the Gilbert-Shannon-Reeds model is a good model for
the way real people shuffle cards. The definitive work on shuffling was done by Bayer
and Diaconis [3] followed by Diaconis, McGrath and Pitman [5]. The first paper gives a
clear proof that (3/2) log2 n+ c shuffles are necessary and suffice by giving a closed form
formula for the chance that the deck is in any given arrangement after any number of



shuffles (an excellent expository account of this work is given by Mann [7]). The second
paper determines the cycle structure, showing that such features as the number of fixed
points get random after any growing number of shuffles. A recent extension of the Gilbert-
Shannon-Reeds model is given by Lalley [6].

We consider the following problem. A deck of 2n cards labeled consecutively from 1
on top to 2n on bottom is face down on the table. The deck is given k riffle shuffles and
placed back on the table, face down. A guesser tries to guess at the cards one at a time,
starting from top. During this process the guesser is given no feedback, i.e., the identity of
the card guessed at is not revealed, nor is he told whether a particular guess was correct
or not. The question is to find a guessing strategy which maximizes the expected number
of correct guesses. In case there exists a unique such strategy, we call it the best strategy.

The main result of this paper is the following.

Theorem 1.1.

(a) For k ≥ 2 log2(2n) + 1, the best guessing strategy after k riffle shufflings of a deck
of 2n cards is to guess 1 at the first n cards and 2n at the remaining n.

(b) Suppose 1 < c < 2 and n ≥ n(c), where n(c) is some positive integer depending
on c. Then if the deck has been given c log2(2n) riffle shuffles, the above guessing strategy
does not maximize the expected number of correct guesses.

In Section 5 we indicate a way of using our guessing problem to measure how well a deck
of cards is mixed. We argue that for even n a number of the order of log2(n) shuffles suffices
to mix well a deck of n cards. This is in accordance with a result of Bayer and Diaconis [3]
stating that the total variation distance from the probability distribution obtained after
k riffle shuffles to the uniform distribution drops abruptly around k = (3/2) log2 n from
being very close to 1 to being very close to zero. However, unlike in the case of total
variation distance, for our measure of well-mixedness there is no cutoff phenomenon (this
is not surprising, since numerical evidence presented in [3] suggests this is the case for a
similarly defined measure in the situation of complete feedback).

2. The position matrix

Suppose we have a deck of n cards, labeled consecutively starting with 1 on top and
ending with n on the bottom. The position matrix M = Mn is the n × n matrix whose
(i, j) entry is the probability that the card labeled i ends up in position j after a riffle
shuffle (card position i is the slot between cut positions i− 1 and i, i = 1, . . . , n).

Lemma 2.1. For 1 ≤ i, j ≤ n we have

Mii =
1

2n
(2i−1 + 2n−i) (2.1)

Mij =
1

2n−j+1

(

n− j

i− j

)

, for i > j (2.2)

Mij = Mn−i+1,n−j+1. (2.3)
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Proof. Imagine having a second set of numbers on our cards, one in which the cards are
labeled consecutively from 1 on bottom through n on top. Call this the “upward labeling”;
call the original labeling the “downward labeling.”

It is clear that, after a riffle shuffle, card i ends up in position j in downward labeling if
and only if card n−i+1 goes to position n−j+1 in upward labeling. Since the probability
distributions involved in the riffle shuffle have a vertical symmetry axis, we obtain (2.3).

Since we are cutting by the binomial distribution and we have
(

n
k

)

equally likely in-
terleavings after a cut at position k, each sequence “cut followed by interleaving” occurs
with probability 1/2n. Therefore, to determine Mij it suffices to count the number of
cut-interleavings in which card i ends up in position j.

Let i > j. If the cut was made at position k ≥ i, then the i − 1 cards preceding card
i in the upper deck will still precede it after the interleaving, thus preventing card i from
occupying position j.

Suppose therefore that the cut was made at some position k < i. The cards labeled
k+1, k+2, . . . , i− 1 (i− k− 1 in number) will always precede card i after the shuffle. In
order that card i ends up in position j, we need j − i+ k cards from the upper deck to be
interleaved above it. Since these have to be the first j− i+ k cards of the upper deck, one
can do this in

(

j−1
j−i+k

)

ways. To complete the shuffle, we have to interleave the remaining

i− j cards in the top deck below card i; this can be achieved in
(

n−j
i−j

)

ways.

Therefore, the total number of interleavings sending card i to position j is

∑

k

(

j − 1

j − i+ k

)(

n− j

i− j

)

= 2j−1

(

n− j

i− j

)

,

thus proving (2.2).

Finally, consider the case i = j. The above discussion yields 2i−1
(

n−i
0

)

= 2i−1 interleav-
ings sending card i to position i. However, we obtain some more by cutting at positions
k ≥ i: there are

(

n−i
k−i

)

interleavings of the resulting decks for which card i occupies position

i. Summing over k, this gives an additional term of 2n−i, thus proving (2.1). �

The crucial fact in our proof of Theorem 1.1 is that we can determine explicitly the
eigenvalues and eigenvectors of the position matrix M .

For m ≥ 0, let um ∈ Rn be the column vector with i-th component (−1)i−1
(

m
i−1

)

,

i = 1, . . . , n. Let u′
m be the column vector obtained from (−1)m−1um by reading its

components from bottom to top (i.e., the i-th component of u′
m is (−1)n−i+m−1

(

m
n−i

)

).
Denote by v0 ∈ Rn the column vector with all coordinates equal to 1, and define vm :=
um−1 + u′

m−1, for m = 1, 2, . . . , n− 1. In other words, for 1 ≤ m ≤ n− 1 and 1 ≤ i ≤ n
we set

vm(i) := (−1)i−1

(

m− 1

i− 1

)

+ (−1)n−i+m

(

m− 1

n− i

)

, (2.4)

where v(i) denotes the i-th component of the vector v.
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Theorem 2.2. For 0 ≤ m ≤ n− 1, vm is an eigenvector of the position matrix M , with
corresponding eigenvalue 1/2m.

One may wonder how could one guess the eigenvalues, and especially the eigenvectors,
ofM = Mn. This can be done for example by computing them explicitly for small values of
n, using a linear algebra package on the computer. The pattern of the eigenvalues is then
easily recognized. Normalizing the eigenvectors so that their first coordinates are 1, the
coordinates of the eigenvector corresponding to the eigenvalue 1/2n−1 are readily identified
as signed binomial coefficients. After some experimentation one arrives at conjecturing
that the eigenvectors are given by (2.4).

Proof. As a consequence of the definition, all row sums of M equal 1. Therefore, v0 is
an eigenvector with eigenvalue 1.

Let rk denote the k-th row of M . To prove the Theorem, we have to show that for all
1 ≤ k ≤ n (and all 0 ≤ m ≤ n− 2) we have

2nrk · um + 2nrk · u′
m = 2n−m−1

(

(−1)k−1

(

m

k − 1

)

+ (−1)n−k+m−1

(

m

n− k

))

, (2.5)

where the dot on the left hand side denotes the usual scalar product of vectors. Using
Lemma 2.1, the first term on the left hand side of (2.5) can be written as

2nrk · um =

k−2
∑

i=0

(−2)i
(

m

i

)(

n− i− 1

k − i− 1

)

+ (−1)k−1

(

m

k − 1

)(

2k−1

(

n− k

0

)

+ 2n−k

(

k − 1

0

))

+ (−1)m2n−m−1
m−k
∑

i=0

(−2)i
(

m

i

)(

m− i

k − 1

)

=

k−1
∑

i=0

(−2)i
(

m

i

)(

n− i− 1

k − i− 1

)

+ (−1)m2n−m−1
m−k+1
∑

i=0

(−2)i
(

m

i

)(

m− i

k − 1

)

. (2.6)

Similarly, one obtains that

2nrk · u′
m = (−1)m−1

n−k
∑

i=0

(−2)i
(

m

i

)(

n− i− 1

n− i− k

)

− 2n−m−1
m−n+k
∑

i=0

(−2)i
(

m

i

)(

m− i

n− k

)

. (2.7)
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To prove (2.5) we proceed as follows: first, we show that the last sum in (2.6) is equal
to the first term in (the expansion of) the right hand side of (2.5); second, we show that
the second sum on the right hand side of (2.7) equals the second term on the right hand
side of (2.5); and third, we show that the second to last sum in (2.6) is the negative of the
first sum on the right in (2.7).

After some manipulation, the three claims above are seen to be equivalent to the fol-
lowing three equalities:

m−k+1
∑

i=0

(−2)i
(

m

i

)(

m− i

k − 1

)

=(−1)m−k+1

(

m

m− k + 1

)

(2.8)

m−n+k
∑

i=0

(−2)i
(

m

i

)(

m− i

n− k

)

=(−1)m−n+k

(

m

m− n+ k

)

(2.9)

k−1
∑

i=0

(−2)i
(

m

i

)(

n− i− 1

k − i− 1

)

=(−1)m
n−k
∑

i=0

(−2)i
(

m

i

)(

n− i− 1

n− i− k

)

. (2.10)

The first two equalities are clearly equivalent: one is obtained from the other by replac-
ing k by n− k + 1. Replacing k by k + 1 in (2.8), the identity to be proved becomes

m−k
∑

i=0

(−2)i
(

m

i

)(

m− i

k

)

= (−1)m−k

(

m

m− k

)

.

However, one has more generally that

∑

i≥0

xi

(

m

i

)(

m− i

k

)

= (x+ 1)m−k

(

m

m− k

)

,

since the coefficients of xi on the left and right hand sides of the above relation are readily
seen to be equal.

To complete the proof, we need to verify identity (2.10). This will follow from Lemma 2.4
by replacing n by n− 1 and k by k − 1. �

The following identity is proved in [8, p.8].

Lemma 2.3.
∑

i≥0(−1)i
(

n−i
m−i

)(

p
i

)

=
(

n−p
m

)

.

For nonnegative integers m,n and k, define

f(m,n, k) :=

k
∑

i=0

(−2)i
(

m

i

)(

n− i

k − i

)

.
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Lemma 2.4. f(m,n, k) = (−1)mf(m,n, n− k).

Proof. We have

f(m,n, k) =
k
∑

i=0

(−2)i
(

m

i

)(

n− i

n− k

)

=
k
∑

i=0

(−1)i
(

m

i

)(

n− i

n− k

) i
∑

j=0

(

i

j

)

=

k
∑

j=0

k
∑

i=j

(−1)i
(

m

i

)(

i

j

)(

n− i

n− k

)

=

k
∑

j=0

(

m

j

) k
∑

i=j

(−1)i
(

m− j

i− j

)(

n− i

n− k

)

=

k
∑

j=0

(

m

j

)

∑

i≥0

(−1)i+j

(

m− j

i

)(

n− j − i

n− k

)

, (2.11)

where at the fourth equality we used that
(

m
i

)(

i
j

)

=
(

m
j

)(

m−j
i−j

)

.

Replacing simultaneously p ← m − j, n ← n − j and m ← k − j in Lemma 2.3, we
obtain

∑

i≥0

(−1)i
(

m− j

i

)(

n− j − i

k − j − i

)

=

(

n−m

k − j

)

.

Therefore, we can continue the sequence of equalities (2.11) and obtain

f(m,n, k) =

k
∑

j=0

(−1)j
(

m

j

)(

n−m

k − j

)

.

Thus, if Q = Qm,n is the polynomial (1 − x)m(1 + x)n−m, then f(m,n, k) is just the
coefficient of xk in Q. Let Q =

∑

ν≥0 aνx
ν . The statement of the Lemma is then equivalent

to

ak = (−1)man−k.

However, this follows because

xnQ(x−1) = xn(1− x−1)m(1 + x−1)n−m

= (x− 1)m(x+ 1)n−m

= (−1)m(1− x)m(1 + x)n−m

= (−1)mQ(x). �
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Denote by P = Pn the matrix whose i-th column is vi−1, for i = 1, . . . , n. It fol-
lows from Theorem 2.2 that P−1MP is the diagonal matrix diag(1, 1/2, 1/22, . . . , 1/2n−1).
However, the probabilities of specific cards ending up in designated places after repeated
riffle shufflings are given by the entries of the corresponding power of M . By the previous
observation, the powers of M can be computed provided we find P−1.

3. The matrix P−1

Remarkably, up to sign, the determinants of the matrices P turn out to be factorials.

Let v
(n)
j , j = 0, . . . , n− 1 be the eigenvectors of Mn.

Lemma 3.1. For 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1 we have

v
(n)
j (i + 1)− v

(n)
j (i) = v

(n+1)
j+1 (i+ 1).

Proof. Clearly, the statement is true for j = 0. For j ≥ 1, we obtain by (2.4) that

v
(n)
j (i + 1)− v

(n)
j (i) =(−1)i

(

j − 1

i

)

+ (−1)n−i+j−1

(

j − 1

n− i− 1

)

− (−1)i−1

(

j − 1

i− 1

)

− (−1)n−i+j

(

j − 1

n− i

)

=(−1)i
(

j

i

)

+ (−1)n−i+j+1

(

j

n− i

)

=v
(n+1)
j+1 (i + 1).

Lemma 3.2. det(Pn) = (−1)(
n

2
)n!.

Proof. The statement is clearly true for n = 1. Therefore, it suffices to prove that for
n ≥ 2 one has

det(Pn) = (−1)n−1n det(Pn−1). (3.1)

Let An be the (n− 1)× (n− 1) matrix obtained from Pn by deleting the first row and
column and let Bn be the (n− 2)× (n− 2) matrix obtained from Pn by deleting the first
and last rows and the first two columns. By the definition of the eigenvectors vi, the sum
of the entries in the first column of Pn is n, while the remaining column sums are zero.
Therefore, replacing the first row by the sum of all rows in Pn and then expanding on the
first row we obtain

det(Pn) = n det(An). (3.2)

Since the single nonzero entry in the first column of An is the −1 in the last row, it
follows that det(An) = (−1)n−1 det(Bn). Thus, by (3.2) we obtain
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det(Pn) = (−1)n−1n det(Bn). (3.3)

On the other hand, consider the matrix Pn−1; denote its rows by R1, . . . , Rn−1. For
i = 1, . . . , n − 2, replace Ri by Ri − Ri−1. Clearly, the only nonzero entry in the first
column of the new matrix P ′

n−1 is a 1 in the last row. Moreover, by Lemma 3.1, the
matrix obtained from P ′

n−1 by deleting the first row and last column is precisely Bn. It
follows that det(Pn−1) = det(Bn), hence (3.3) implies (3.1). �

Denote the (i, j) entry of P−1
n by q

(n)
ij . Since all column sums of Pn are zero except the

first one which is equal to n, it follows that the entries of the first row of P−1
n are all equal

to 1/n. A simple calculation shows that the vector 1
2n−2 (n− 1, n− 3, n− 5, . . . ,−(n− 1))

is orthogonal to all columns of Pn except the second, with which it has scalar product 1.
Thus, this vector gives the second row of P−1

n . The following result allows us to determine
the remaining entries of P−1

n recursively (see also Corollary 3.4).

Lemma 3.3. For 3 ≤ i ≤ n and 1 ≤ j ≤ n− 1 we have

q
(n)
ij − q

(n)
i,j+1 = q

(n−1)
i−1,j . (3.4)

Proof. Let P
(i,j)
n denote the matrix obtained by deleting row i and column j from Pn.

We can rewrite (3.4) as

(−1)i+jP (j,i)
n − (−1)i+j+1P (j+1,i)

n = (−1)i+j−1 det(Pn)

det(Pn−1)
P

(j,i−1)
n−1 . (3.5)

Let R1, . . . , Rn be vectors representing the rows of the matrix Pn. For an n-vector v,
denote by v[k,l,... ] the vector obtained from v by discarding coordinates k, l, . . . . The left
hand side of (3.5) can be expressed as

(−1)i+j(P (j,i)
n + P (j+1,i)

n ) = (−1)i+j det



























R
[i]
1
...

R
[i]
j−1

R
[i]
j +R

[i]
j+1

R
[i]
j+2

...
R

[i]
n



























. (3.6)

As seen in the proof of Lemma 3.2, the first column sum of the matrix in (3.6) is n,
and all other column sums are zero. Replacing the first row by the sum of all rows and
expanding on the first row, we may rewrite the right hand side of (3.6) as
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(−1)i+jn · det



























R
[1,i]
2
...

R
[1,i]
j−1

R
[1,i]
j +R

[1,i]
j+1

R
[1,i]
j+2

...
R

[1,i]
n



























. (3.7)

The only nonzero entry in the first column of the matrix in (3.7) is the entry −1 in the
last row. Expanding on the first column, we obtain by (3.6) and (3.7) that the expression
on the left hand side of (3.5) can be written as

(−1)i+jP (j,i)
n − (−1)i+j+1P (j+1,i)

n = (−1)i+j+nn · det



























R
[1,2,i]
2
...

R
[1,2,i]
j−1

R
[1,2,i]
j +R

[1,2,i]
j+1

R
[1,2,i]
j+2

...
R

[1,2,i]
n−1



























. (3.8)

On the other hand, consider the matrix Pn−1; denote its row vectors by L1, . . . , Ln−1.
By (3.1), the right hand side of (3.5) can be written as

(−1)i+j+nn · det























L
[i−1]
1
...

L
[i−1]
j−1

L
[i−1]
j+1

...
L
[i−1]
n−1























. (3.9)

Replacing L
[i−1]
ν by L

[i−1]
ν − L

[i−1]
ν−1 for ν = 2, . . . , n − 1 and expanding on the first

column, we conclude from (3.9) that the expression on the right of (3.5) equals
9



(−1)i+j+nn · det



























L
[1,i−1]
2 − L

[1,i−1]
1

...
L
[1,i−1]
j−1 − L

[1,i−1]
j−2

L
[1,i−1]
j+1 − L

[1,i−1]
j−1

L
[1,i−1]
j+2 − L

[1,i−1]
j+1

...
L
[1,i−1]
n−1 − L

[1,i−1]
n−2



























. (3.10)

However, Lemma 3.1 implies that Lν−Lν−1 = R
[1]
ν . Since omitting the second and i-th

coordinates of Rν corresponds to discarding the first and (i − 1)-st coordinates of R
[1]
ν , it

follows that the matrices appearing in (3.8) and (3.10) are identical. This proves (3.5). �

Corollary 3.4. For i ≥ 3 and 1 ≤ j ≤ n we have

q
(n)
i1 =

1

n

n−1
∑

ν=1

(n− ν)q
(n−1)
i−1,ν (3.11)

q
(n)
ij = q

(n)
i1 −

j−1
∑

ν=1

q
(n−1)
i−1,ν . (3.12)

Proof. By Lemma 3.3 we obtain

j−1
∑

ν=1

q
(n−1)
i−1,ν =

j−1
∑

ν=1

(

q
(n)
iν − q

(n)
i,ν+1

)

= q
(n)
i1 − q

(n)
ij ,

which proves (3.12).
On the other hand, since the first column of Pn consists entirely of 1’s, the sum of the

entries in the i-th row of P−1
n is zero for all i > 1. Summing both sides of (3.12) for

j = 1, . . . , n we obtain (3.11). �

Lemma 3.5. For n ≥ 4 and 3 ≤ i ≤ n we have

max
j
|q(n)ij | ≤

1

12

(

3(n− 1)

2

)i−2

.

Proof. The above inequalities are readily checked for n = 4 by direct inspection of the
entries of P−1

4 .
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Using Lemma 3.3 and the fact that q
(n)
2j = (n − 2j + 1)/(2n − 2), one readily obtains

that the entries in the third row of P−1
n are given by the formula q

(n)
3j = [(n − 1)/12] −

[(j− 1)(n− j)/(2n− 4)]. A simple analysis shows that for n ≥ 5 this quadratic expression
in j has absolute value at most (n − 1)/12, for j = 1, . . . , n. Therefore, the claim is true
for i = 3.

To complete the proof it suffices to show that, for n ≥ 5,

max
j
|q(n)ij | ≤

3(n− 1)

2
max

j
|q(n−1)

i−1,j |. (3.13)

By (3.11) we obtain

|q(n)i1 | ≤
1

n

n−1
∑

ν=1

(n− ν)|q(n−1)
i−1,ν |

≤ 1

n

n(n− 1)

2
max

j
|q(n−1)

i−1,j |

=
n− 1

2
max

j
|q(n−1)

i−1,j |.

Therefore, (3.12) implies

|q(n)ij | ≤ |q
(n)
i1 |+

j−1
∑

ν=1

|q(n−1)
i−1,ν |

≤
(

n− 1

2
+ n− 1

)

max
j
|q(n−1)

i−1,j |,

which proves (3.13). �

4. The proof of Theorem 1.1

We return now to the guessing problem described in the Introduction. Since the guesser
is given no feedback, his best strategy is to guess at each step j the most likely card to
end up in position j after k riffle shuffles, i.e., his guess should be the index of the row
containing the largest element of the j-th column of Mk.

The argument used to prove (2.3) also shows that (Mk)ij = (Mk)n−i+1,n−j+1. There-
fore, it suffices to show that the largest entry in each of the first n columns of (M2n)

k lies
in the first row: this implies that the largest entry in each of the remaining columns is the
one in the last row.

For the sake of notational simplicity, let qij stand for the (i, j) entry of P−1
2n (this was

previously denoted by q
(2n)
ij ). Let P2n = (pij)1≤i,j≤2n. By the remark at the end of

Section 2, the powers of M = M2n are given by
11



Mk = P2n · diag(1, 1/2k, 1/22k, . . . , 1/2(2n−1)k) · P−1
2n .

Expanding the product on the right hand side we deduce that the (l, j)-entry of Mk is
given by

(Mk)lj =
2n
∑

i=1

pliqij/2
(i−1)k. (4.1)

Since p12 = 1 and pl2 ≤ 0 for l > 1, we obtain using p1i = 1, q1j = 1/(2n), and the
formula expressing the q2j ’s that for 1 ≤ j ≤ n

(Mk)1j =
1

2n
+

2n− 2j + 1

4n− 2

1

2k
+

2n
∑

i=3

qij
2(i−1)k

≥ 1

2n
+

2n− 2j + 1

4n− 2

1

2k
−

2n
∑

i=3

|qij |
2(i−1)k

(4.2)

(Mk)lj =
1

2n
+

2n− 2j + 1

4n− 2

pl2
2k

+
2n
∑

i=3

pliqij
2(i−1)k

≤ 1

2n
+

2n
∑

i=3

|pli||qij |
2(i−1)k

, for l > 1. (4.3)

By the definition of the entries of P , it follows that |pli| ≤ 2i−1−1 for i ≥ 2. Therefore,
by (4.2) and (4.3), to prove part (a) of Theorem 1.1 it suffices to show that for k ≥
2 log2(2n) + 1 and 1 ≤ j ≤ n we have

2n− 2j + 1

4n− 2

1

2k
>

2n
∑

i=3

|qij |
2(i−1)(k−1)

. (4.4)

The statement of Theorem 1.1(a) is easily checked directly for n = 1. For n ≥ 2, we
deduce from Lemma 3.5 that

2n
∑

i=3

|qij |
2(i−1)(k−1)

≤ 1

12

2n
∑

i=3

(3n)i−2

2(i−1)(k−1)

=
1

12

1

2k−1

2n
∑

i=3

(

3n

2k−1

)i−2

. (4.5)

Let k − 1 = 2 log2(3n) + d and write d = log2 α. Then 2k−1 = α(3n)2 and (4.5) yields
12



2n
∑

i=3

|qij |
2(i−1)(k−1)

≤ 1

12

1

α(3n)2

2n
∑

i=3

(

1

3αn

)i−2

<
1

12

1

α(3n)2
1

3αn− 1
(4.6)

(where at the second inequality we assume 3αn > 1). On the other hand, the left hand
side of (4.4) is minimum for j = n, when it equals 1/((4n− 2)2k) = 1/(4α(2n− 1)(3n)2).
Therefore, (4.6) implies that (4.4) holds whenever

1

4α(2n− 1)(3n)2
≥ 1

12α(3n)2(3αn− 1)
.

A simple calculation shows that this is equivalent to (9α− 2)n ≥ 2, which is true for all n
as long as α ≥ 4/9 (this implies 3αn > 1, so the last inequality in (4.6) is true for all such
α). In view of our choice of k, the latter condition is equivalent to k− 1 ≥ 2 log2(2n), thus
proving part (a) of Theorem 1.1.

To complete the proof, we show that the conditions stated in part (b) of Theorem 1.1
imply (Mk)2n > (Mk)1n, i.e., that after k shuffles card 2 is more likely to be in position
n than is card 1.

Using the formulas for the entries q2i and q3i given in the proof of Lemma 3.5, we obtain
that q2n = 1/(4n− 2) and q3n = −(n+ 1)/12. Therefore, (4.1) yields

(Mk)1n =
1

2n
+

1

4n− 2

1

2k
− n+ 1

12

1

4k
+

2n
∑

i=4

qin
2(i−1)k

≤ 1

2n
+

1

4n− 2

1

2k
− n+ 1

12

1

4k
+

2n
∑

i=4

|qin|
2(i−1)k

(4.7)

(Mk)2n =
1

2n
+

n+ 1

12

1

4k
+

2n
∑

i=4

p2iqin
2(i−1)k

≥ 1

2n
+

n+ 1

12

1

4k
−

2n
∑

i=4

(i− 1)|qin|
2(i−1)k

(4.8)

(in (4.8) we used that |p2i| ≤ i − 1).
By (4.7) and (4.8), to prove the inequality (Mk)2n > (Mk)1n it suffices to show that

n+ 1

6

1

4k
− 1

4n− 2

1

2k
>

2n
∑

i=4

i|qin|
2(i−1)k

. (4.9)

Since k = c log2(2n) we can write 2k = α(3n)c, where α = (2/3)c. Using Lemma 3.5 we
obtain (for n ≥ 2)

13



2n
∑

i=4

i|qin|
2(i−1)k

≤ 1

12 · 2k
2n
∑

i=4

i

(

3n

2k

)i−2

=
1

12α(3n)c

2n
∑

i=4

i

(

1

α(3n)c−1

)i−2

. (4.10)

To estimate the last sum in (4.10), notice that the ratio between the (i+1)-st and i-th
terms in this sum is (i + 1)/(iα(3n)c−1). Since c > 1, there exists some positive integer
n1(c) such that this ratio is at most 1/2 for all n ≥ n1(c). It follows from (4.10) that for
all n ≥ n1(c) we have

2n
∑

i=4

i|qin|
2(i−1)k

≤ 1

12α(3n)c
4

α2(3n)2c−2

2n
∑

i=4

1/2i−4

<
2

3

1

α3(3n)3c−2
. (4.11)

By using 2k = α(3n)c on the left hand side of (4.9), we deduce from (4.11) that (4.9) is
implied (for n ≥ n1(c)) by the inequality

n+ 1

6

1

α2(3n)2c
≥ 1

4n− 2

1

α(3n)c
+

2

3

1

α3(3n)3c−2
. (4.12)

The expression on the left is Θ(n1−2c), while the two terms on the right are Θ(n−1−c)
and Θ(n2−3c), respectively. Therefore, as long as 1−2c > −1−c and 1−2c > 2−3c, there
exists some positive integer n2(c) such that (4.12) holds for all n ≥ n2(c). Since these two
inequalities for c are equivalent to our assumption 1 < c < 2, it follows that (4.9) holds
for all n ≥ max(n1(c), n2(c)) and the proof is complete.

Remark. Numerical evidence strongly suggests that the statement of Theorem 1.1(b) is
also true for 0 < c ≤ 1. However, the above method does not seem to apply to this case,
essentially because the estimates (4.7), (4.8), and (4.10) are not sharp enough for small k.

5. A well-mixed deck

It is natural to ask how many shuffles of a deck of n cards are needed to obtain a well-
mixed deck. The standard way of measuring how well the deck is mixed after k shuffles
is to consider the total variation distance from the resulting probability distribution to
the uniform distribution. This approach is used in [3], where it is proved that this total
variation distance drops abruptly around the value k = (3/2) log2 n from being very close
to 1 to being very close to 0.

Alternatively, as mentioned in [3], one can measure how well the deck is mixed by means
of a card guessing problem (the problem considered in [3] is the one in which the guesser
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is provided complete feedback, i.e., he is showed each card after guessing at it; we consider
here the no-feedback case). Notice that if the deck is perfectly mixed (i.e., all orderings
are equally likely), then for all guessing strategies the expected number of correct guesses
equals 1. Now, suppose the deck has been given k riffle shuffles (the initial ordering of
the deck is known to the guesser). Then it is natural to measure how well the deck is
mixed by |Ek(n) − 1|, where Ek(n) is the expected number of correct guesses when the
best strategy is used.

Let n be even. As a consequence of Theorem 1.1(a), once k ≥ 2 log2 n+ 1, the number
of correct guesses under the best strategy can be at most 2. Therefore, we have Ek(n) ≤ 2.
Thus, since the best guessing strategy yields only a gain of at most 1 over the case of the
uniform distribution, one can say that the deck is well-mixed (this is indeed a small gain,
since by Corollary 5.5(b), E1(n) = Θ(

√
n)).

In the complete feedback case, for a deck chosen uniformly at random, it is clear that
the best strategy is to guess at each step a card known to be in the deck, and the expected
number of correct guesses under this strategy is hn := 1 + (1/2) + · · ·+ (1/n). Let F k(n)
denote the expected number of correct guesses under the best strategy for the complete
feedback problem with an n-card deck shuffled k times. As indicated in [3], numerical
evidence suggests that, once k is sufficiently large so that the deck is well-mixed, each
additional shuffle cuts the difference F k(n)− hn roughly in half. In this section we prove
(see Corollary 5.2) that a similar phenomenon occurs in the no-feedback case.

Proposition 5.1. For k ≥ 2 log2(2n) + 1,

Ek(2n) = 1 +
n2

2n− 1

1

2k
+ 2

n
∑

i=2

(

q
(2n+1)
2i+1,1 − q

(2n+1)
2i+1,n+1

)

/2(2i−1)k. (5.1)

Proof. Let M = M2n be the position matrix for the 2n-card deck. By Theorem 1.1(a),
in the case under consideration we have

Ek(2n) = (Mk)11 + · · ·+ (Mk)1n + (Mk)2n,n+1 + · · ·+ (Mk)2n,2n. (5.2)

Using p1i = 1 we obtain by (4.1) that

(Mk)1m =

2n
∑

i=1

q
(2n)
im

2(i−1)k
,

m = 1, . . . , n. By the central symmetry of the matrix Mk we deduce therefore from (5.2)
that

Ek(2n) = 2

n
∑

m=1

2n
∑

i=1

q
(2n)
im

2(i−1)k

= 2

2n
∑

i=1

1

2(i−1)k

n
∑

m=1

q
(2n)
im . (5.3)
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However, since the columns of the matrix P are alternately symmetric and antisym-
metric with respect to the horizontal symmetry axis of P , it follows that the rows of P−1

are alternately symmetric and antisymmetric with respect to the vertical symmetry axis of
P−1. Since the sum of the entries in each row of index at least 2 in P−1 is zero, it follows
that the summand in the last sum on i of (5.3) is zero unless i is even. Using (3.12) and

replacing q
(2n)
2m = (2n− 2m+ 1)/(4n− 2) in (5.3) we obtain the formula in the statement

of the Lemma. �

Corollary 5.2. For any 1 < a < 2 there exists a positive integer ka such that for all n
and for all k ≥ 2 log2(2n) + ka we have Ek+1(2n)− 1 ≤ (Ek(2n)− 1)/a.

Proof. By (5.1), the statement holds in the case n = 1 with ka = 1. Assume therefore
n ≥ 2. Denote by S the sum on the right hand side of (5.1). By Lemma 3.5 we have

|S| ≤
n
∑

i=2

(

|q(2n+1)
2i+1,1 |+ |q

(2n+1)
2i+1,n+1|

)

/2(2i−1)k

≤ 2
n
∑

i=2

1

12

(

3n

2k

)2i−1

≤ 1

6

(

3n

2k

)3
(

1−
(

3n

2k

)2
)−1

. (5.4)

Let 2k = α(3n)2. For α ≥ 1, (5.4) implies

2|S| ≤ 1

3

1

23k/2

(

3n

2k/2

)3
(

1−
(

3n

2k

)2
)−1

=
1

3

1

23k/2
1

α3/2

(

1−
(

1

3αn

)2
)−1

≤ 2−3k/2, (5.5)

for all n. By (5.1) and (5.5) we obtain

Ek(2n)− 1 ≥ n2

2n− 1

1

2k
− 2−3k/2

Ek+1(2n)− 1 ≤ n2

2n− 1

1

2k+1
+ 2−3(k+1)/2.

Therefore,
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(Ek(2n)− 1)− a(Ek+1(2n)− 1) ≥ 1− a/2

2k
n2

2n− 1
− 2−3k/2 − a2−3(k+1)/2

≥ 1− a/2

2k
n2

2n− 1
− (1 + a)2−3k/2. (5.6)

Since we are assuming n ≥ 2, replacing 2k = α(3n)2 we obtain that the right hand side
of (5.6) is nonnegative whenever 4

√
α ≥ (1 + a)/(2− a). This proves the Corollary. �

Remark 5.3. Using Lemma 2.1, one can work out explicitly the value of E1(n), i.e., the
expected number of correct guesses under the best strategy when the deck is given a single
riffle shuffle (Lemma 5.4 gives the best strategy; Corollary 5.5 gives E1(n) for n even).

Lemma 5.4. In the case of a single riffle shuffle, a strategy that maximizes the expected
number of correct guesses is to guess, in order, 1, 2, 2, 3, 3, 4, 4, 5, 5 . . . until we reach the
middle of the deck, and then guess so that the rest of the guessing sequence, read backwards,
is n, n− 1, n− 1, n− 2, n− 2, · · · .

Proof. By Lemma 2.1, the entries of the k-th column of the position matrix Mn are 2−n

times the following:

2n−k

(

k − 1

k − 1

)

, 2n−k

(

k − 1

k − 2

)

, · · · , 2n−k

(

k − 1

1

)

,

2n−k + 2k−1,

2k−1

(

n− k

1

)

, 2k−1

(

n− k

2

)

, · · · , 2k−1

(

n− k

n− k

)

. (5.7)

Since the best guess at the card in position k is the index of the row containing the
largest entry of the k-th column of Mn, all we need to do is determine the largest of the
numbers (5.7).

Clearly, A := 2n−k
(

k−1
⌊(k−1)/2⌋

)

and B := 2k−1
(

n−k
⌊(n−k)/2⌋

)

are the largest of the first k− 1

and last n− k numbers in (5.7), respectively. Therefore, it suffices to compare the largest
of these two numbers to C := 2n−k + 2k−1.

For i ≥ 1, define ai :=
(

i
⌊i/2⌋

)

/2i. Considering separately the cases of even or odd i, it is

straightforward to check that ai+1/ai ≤ 1 for all i ≥ 1. It follows that for k ≤ ⌊(n+ 1)/2⌋
we have A ≥ B. Furthermore, it is clear that for 3 ≤ k ≤ ⌊(n+ 1)/2⌋ we also have A ≥ C.
On the other hand, for k ≤ 2 the largest of the numbers (5.7) is C. This proves the
statement of the Lemma. �

Corollary 5.5. (a) For all n ≥ 1 we have

E1(2n) =
3

22n−1
+

n−1
∑

i=0

1

2i

(

i

⌊i/2⌋

)

.
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(b) E1(2n) ∼
√

8
π

√
n.

Proof. Part (a) follows directly from Lemmas 5.4 and 2.1. To obtain (b), note that

Stirling’s formula implies that
(

2i
i

)

/22i ∼ 1/
√
πi for large i. Moreover, an immediate

calculation shows that
(

2i−1
i−1

)

/22i−1 =
(

2i
i

)

/22i, for all i. Part (b) follows now from the

fact that
∑n

i=1 1/
√
i ∼ 2

√
n. �

Note. One can generalize dovetail shuffling as follows (see e.g. [3]). Consider a deck
of cards and let a ≥ 2 be an integer. An a-shuffle consists of (1) cutting the deck by
selecting a− 1 cutting places at random according to the multinomial distribution and (2)
interleaving the a resulting decks at random, according to the uniform distribution.

All the results discussed in this paper can be extended to a-shuffles. More precisely, let

M
(a)
n denote the n×nmatrix whose (i, j) entry is the probability that card i goes to position

j after an a-shuffle. Then it turns out that the eigenvalues of M
(a)
n are 1, 1/a, . . . , 1/an−1,

and, remarkably, the eigenvectors are the same as in the case a = 2.

This can be proved as follows. Let R(a) = R
(a)
n be the matrix whose rows and columns

are indexed by permutations on n elements and whose (σ, τ) entry is the probability
that a deck in order σ ends up in order τ after an a-shuffle. Regarding R(a) as a linear
transformation and considering a suitable change of basis, one can see that R(a) is similar
to a block-diagonal matrix having M (a) as one of the blocks (indeed, consider any basis
containing the n vectors

∑

σ:σ−1(1)=1 σ, . . . ,
∑

σ:σ−1(1)=n σ; these vectors span an invariant

subspace whose matrix is M (a)).

Since R(a)R(b) = R(ab) (see e.g. [3]), it follows from the previous paragraph that
M (a)M (b) = M (ab). Let D = diag(1, 1/2, . . . , 1/2n−1) and let P be the matrix whose
columns are the eigenvectors of M = M (2). Then by Theorem 2.2 we obtain

M (2k) =
(

M (2)
)k

= P−1DkP,

which implies that our claim about the eigenvalues and eigenvectors of M (a) is true for
a = 2k, k ≥ 1.

However, this implies our claim for arbitrary a. Indeed, we know by [3, Theorem 3] that

R
(a)
id,π =

1

an

(

n+ a− r(π)

n

)

,

where r(π) is the number of rising sequences of π. It follows that

M
(a)
i,j =

1

an

∑

π:π−1(i)=j

(

n+ a− r(π)

n

)

.

Let vm be the m-th column of P . Then the coordinates of the vector a(m−1)M (a) ·vm−vm
are polynomials in a that vanish at a = 2k, k ≥ 1, and are therefore identically zero. This
completes the proof.
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