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Abstract. A cellular graph is a graph whose edges can be partitioned into 4-cycles (called
cells) so that each vertex is contained in at most two cells. We present a “Complementa-
tion Theorem” for the number of matchings of certain subgraphs of cellular graphs. This
generalizes the main result of [2]. As applications of the Complementation Theorem we ob-
tain a new proof of Stanley’s multivariate version of the Aztec diamond theorem, a weighted
generalization of a result of Knuth [7] concerning spanning trees of Aztec diamond graphs,
a combinatorial proof of Yang’s enumeration [17] of matchings of fortress graphs and direct
proofs for certain identities of Jockusch and Propp [6].

1. Introduction

A perfect matching of a graph is a collection of vertex-disjoint edges that are collectively
incident to all vertices. We will often refer to a perfect matching simply as a matching.
Denote by M(G) the number of matchings of the graph G. In case G is weighted (i.e., is
equipped with a weight function on the edges), the weight of a matching µ is the product
of the weights of the edges contained in µ; in this case M(G) is defined to be the sum of
the weights of all matchings of G, and is called the matching generating function of G.

The Aztec diamond of order n, denoted ADn, is defined to be the graph whose vertices
are the white squares of a (2n + 1) × (2n+ 1) chessboard with black corners, and whose
edges connect precisely those pairs of white squares that are diagonally adjacent (Figure
3.1 illustrates AD3).

In [5] there are presented four proofs of the fact that M(ADn) = 2n(n+1)/2. The re-
currence M(ADn) = 2nM(ADn−1) (which clearly implies the latter formula) has been
generalized in [2] to bipartite cellular graphs (a graph is cellular if its edges can be parti-
tioned into 4-cycles so that each vertex is contained in at most two 4-cycles of the partition).
Namely, if G is a bipartite cellular graph, then it is proved in [2] that M(G) = 2ν(G)M(G′),
where ν(G) is a certain statistic and G′ is an easily constructible subgraph of G.
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In this paper we prove a generalization (which we call the Complementation Theorem)
of this result to weighted graphs admitting a (not necessarily bipartite) cellular completion
(see Section 2 for the definition). This allows us to obtain a number of new applications.

First, we obtain a new proof for Stanley’s multivariate Aztec diamond theorem [12]. We
also give a new multivariate version of the Aztec diamond theorem, one having 4n+1 free
parameters for the diamond of order n. The edge weighting we employ is quite different
from the ones used in the two previous multivariate versions (due to Stanley and Yang,
respectively), both of which involve 4n free parameters in the order n case.

Second, as an immediate corollary of the Complementation Theorem we obtain direct
combinatorial proofs for some identities of Jockusch and Propp [6] which relate the num-
bers of matchings of three kinds of quartered Aztec diamonds. In at least one case, this
appears to be the first combinatorial proof.

Third, employing also a construction of Temperley that relates spanning trees to perfect
matchings, we give a combinatorial proof of Stanley’s ex-conjecture on the number of
spanning trees of the even and odd Aztec diamonds, first proved by Knuth [7] using linear
algebra. Our argument yields in fact a weighted generalization of Knuth’s result, thus
proving a particular case of a more general conjecture of Chow (recently, Chow has proved
his general conjecture [1]).

Fourth, we use the Complementation Theorem to refine a formula due to Mills, Robbins
and Rumsey [11] for a certain weighted count of alternating sign matrices.

And fifth, we present a new way of enumerating the perfect matchings of the fortress
graphs considered by Yang in [17]. This appears to be the first combinatorial proof of
Yang’s formulas.

2. The Complementation Theorem

Let G be a graph with vertex set V (G). A cellular graph is a finite graph whose edges
can be partitioned into 4-cycles — the cells of the graph — such that each vertex is
contained in at most two cells. A weighted cellular graph is a cellular graph equipped with
a weight function on the edges.

Let c0 be a cell and consider two opposite vertices x0 and y0 of c0. By definition, x0 is
contained in at most one other cell besides c0. If such a cell c1 exists, let x1 be its vertex
opposite x0. Then x1 in turn is contained in at most one cell other than c1; if such a
cell exists denote by x2 its vertex opposite x1, and continue in this fashion. Repeat the
procedure starting with y0.

The set of cells that arise this way is said to be a line of G. If the sequence {xi} (and
hence the analogous sequence {yi}) defined above is finite, the line is called a path, and the
last entry of each of the two sequences is called an extremal vertex of G. In the remaining
case {xi} must be periodic and the line is referred to as a cycle.

Let X(G) be the set of extremal vertices of G.
Given a graph H , a cellular graph G is said to be a cellular completion of H if

(i) H is an induced subgraph
(ii) V (G) \ V (H) ⊆ X(G).

Let G be a cellular completion of the graph H . The complement of H (with respect to
G) is defined to be the induced subgraph H ′ of G whose vertex set is determined by the
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Figure 2.1(a) Figure 2.1(b)

Figure 2.1(c)

equation V (H ′)△V (H) = X(G), where the triangle denotes symmetric difference of sets
(an example is illustrated in Figure 2.1; the edges of G not contained in H (resp., H ′) are
represented by dotted lines). In other words, V (H ′) is the set obtained from V (H) after
performing the following operation at each end of every path of G: if the corresponding
extremal vertex belongs to V (H), remove it; otherwise, include it. We note that a graph
may have more than one cellular completion (see the paragraph following the proof of
Lemma 4.2). This fact will prove to be crucial in many of our results.

If G (and hence, by restriction, H) is weighted by the weight function wt, define a new
weight wt′ (the complementary weight of wt) by setting wt′(e) := wt(e′), where e′ is the
edge opposite e in the cell containing e. The weight on H ′ is defined to be the restriction
of wt′ to H ′.

If an extremal vertex of a path L of G belongs to V (H) then the path is said to be
closed at that end; otherwise, we say it is open at that end. Define the type τ(L) of the
path L to be 1 less than the number of closed ends of L; define the type of each cycle to
be 0.

Let ∆ be the function defined on the set of cells as follows: if the cell c has edges
weighted by x, y, z and w (in cyclic order), set ∆(c) := xz + yw.

Theorem 2.1 (Complementation Theorem). Let G be a weighted cellular graph and
suppose its cells can be partitioned into disjoint lines L1, L2, . . . , Lk so that ∆(c) = ∆i for
all cells c along Li, i = 1, 2, . . . , k. If G is a cellular completion of the subgraph H, we
have

M(H) = ∆
τ(L1)
1 ∆

τ(L2)
2 · · ·∆

τ(Lk)
k M(H ′).

As an illustration, suppose H is the graph shown in Figure 2.1(a), and consider the
partition of its cells into horizontal lines. Since the value of τ on each such line is zero, we
obtain that H has the same number of matchings as the graph shown in Figure 2.1(c).
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Before giving the proof we need some preliminary results. Given a graph H and a
cellular completion G, an alternating sign pattern (ASP) of shape (H,G) is an assignment
of integers to the cells of G such that

(i) all entries are 1, 0 or −1
(ii) the non-zero elements along each line alternate in sign
(iii) in every path, the closest non-zero element to a closed end is a 1, and the closest

non-zero element to an open end is a −1.

Denote by ASP (H,G) the set of alternating sign patterns of shape (H,G).
Let G and H be as in the statement of the Complementation Theorem, and consider a

matching µ of H . Write one of the numbers 1, 0 or −1 in each cell of G corresponding to
the cases when the cell contains 2, 1 or 0 edges of µ. According to these numbers, we call
them 1-, 0- or (−1)-cells. Let A denote the obtained pattern.

Lemma 2.2. A ∈ ASP (H,G).

Proof. Consider a portion of a line L of G consisting of a 1-cell c bordered on both
sides by (possibly empty) sets of 0-cells. Suppose c′ is a 0-cell next to c and let x be their
common vertex. Since x is matched internally in c, the unique edge of µ contained in c′

must lie in the “hook” of c′ that points away from c, i.e., in the union of the two edges of
c′ not touching c. Therefore, the vertex x′ of c′ opposite x is matched inside c′. Hence,
the next 0-cell c′′ must contribute to µ with an edge contained in the hook of c′′ pointing
away from c. This argument can be repeated throughout both runs of 0-cells bordering c.

For any two runs of 0-cells separated by a single 1-cell we obtain this way a set of
hooks on the 0-cells pointing away from the 1-cell with the property that the unique edge
contributed by each 0-cell in µ is contained in the corresponding hook.

A similar argument shows that if two runs of 0-cells are separated by a single (−1)-cell,
there is an induced collection of hooks on the 0-cells pointing towards the (−1)-cell such
that the edge of µ contained in each 0-cell is contained in the hook placed on that cell.

Finally, consider the case when there is a run of 0’s next to an extremal vertex of a
path. If the extremal vertex is not in V (H), then essentially the same argument we used
in the first paragraph of this proof shows that the unique edge contributed by each 0-cell
to the matching must lie in the hook pointing away from the extremal vertex. Similarly,
if the extremal vertex belongs to V (H), we obtain a collection of hooks pointing towards
the extremal vertex and containing the restriction of µ to these 0-cells.

Regard each line of A as being built up from pieces consisting of either two maximal
runs of 0’s separated by a single non-zero entry or one maximal run of zeroes at an end of
a path of A (the only lines of A not covered by this description are the cycles consisting
entirely of zeroes; however, properties (i)–(iii) are obviously met in this case).

By the above construction, each maximal run of 0-cells is given two sets of hooks,
both containing the edges contributed by the 0-cells to µ. Therefore the hooks must have
nonempty intersection, and this happens only if the two sets of hooks coincide along every
maximal run of 0’s. This in turn is equivalent precisely to conditions (ii) and (iii) from
the definition of an alternating sign pattern. �

Let A ∈ ASP (H,G) and think of the entries of A as being written in the corresponding
cells of G. For each cycle C of G consisting entirely of zeroes there are exactly two
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collections of disjoint hooks on the cells of C pointing along the cycle.

Lemma 2.3. Choose independently one of the two sets of disjoint hooks pointing along
each cycle of G consisting entirely of zeroes. Then there are precisely 2N+(A) matchings of
H compatible with the selected sets of hooks and having associated ASP A, where N+(A)
denotes the number of entries of A equal to 1.

Proof. Consider along each line of G the hooks constructed in the proof of Lemma
2.2. Note that since these hooks are determined by the non-zero entries of A and by the
extremal vertices of G, this construction provides hooks on the 0-cells of each line, except
for the cycles consisting entirely of zeroes. However, for each of these cycles we are given
a set of disjoint hooks pointing along the cycle.

Any matching µ of H with associated ASP A and compatible with the selected hooks
on the all-zero cycles must be compatible with all hooks under consideration. Let c be
a 0-cell. Since there are two lines containing each cell, we have two hooks placed on c.
However, these two hooks always intersect in a single edge of c. This shows that there is a
unique way of specifying µ on the 0-cells so as to meet our requirements. Since there are
2N+(A) possibilities for the restriction of µ to the union of the 1- and (−1)-cells, we obtain
the statement of the Lemma. �

Proof of Theorem 2.1. Consider an alternating sign pattern of shape (H,G) and let
C = {C1, C2, . . . , Cl} be the set of cycles of G consisting entirely of zeroes. On each cycle Ci

declare one of the two sets of disjoint hooks pointing along the cycle as being distinguished
(we say that this set of hooks specifies an orientation of Ci). We will denote by C+

i and C−
i ,

respectively, the fact that the the distinguished or the non-distinguished set of hooks has
been chosen on Ci. Denote by MA(H ;C±

1 , . . . , C±
l ) the generating function of matchings

of H compatible with a specified orientation of the Ci’s and having associated ASP A. We
claim that

MA(H ;C+
1 , . . . , C+

l ) = ∆
τ(L1)
1 ∆

τ(L2)
2 · · ·∆

τ(Lk)
k M−A(H

′;C−
1 , . . . , C−

l ), (2.1)

where −A denotes the pattern obtained by changing the sign of all entries in A.
To show this, note first that the map A 7→ −A is a bijection between ASP (H,G) and

ASP (H ′, G). Indeed, as a consequence of the definition of the complement, G is a cellular
completion of H ′, so ASP (H ′, G) is well-defined. Furthermore, conditions (i) and (ii)
from the definition of an alternating sign pattern are clearly invariant under interchanging
1’s and (−1)’s. Moreover, since an extremal vertex of a path is contained in V (H) if and
only if it is not contained in V (H ′), it follows that the effect of this interchanging on (iii)
is that of replacing H by H ′.

As was shown in the proof of Lemma 2.3, all 2N+(A) matchings in MA(H ;C+
1 , . . . , C+

l )
(i.e., matchings with associated ASP A compatible with the distinguished sets of hooks
on the Ci’s) are identical when restricted to the 0-cells. Therefore, up to a multiplica-
tive factor equal to the product of the weights of the specified edges on the 0-cells,
MA(H ;C+

1 , . . . , C+
l ) is given by considering only the contribution of the 1-cells. As the

lines L1, L2, . . . , Lk partition the set of cells and since ∆(c) = ∆i for all cells c along Li

(i = 1, 2, . . . , k), we conclude that the total contribution of the 1-cells in the matchings of
MA(H ;C+

1 , . . . , C+
l ) is
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∆
N+(L1)
1 ∆

N+(L2)
2 · · ·∆

N+(Lk)
k , (2.2)

where N+(Li) denotes the number of 1’s in the cells of Li.
Similarly, Lemma 2.3 implies that all matchings inM−A(H

′;C−
1 , . . . , C−

l ) have identical
restrictions to the 0-cells. Moreover, note that the specified edge e′ on each 0-cell c is now
the edge opposing the edge e of c participating in the matchings in MA(H ;C+

1 , . . . , C+
l ).

However, recall that the weight wt′ on H ′ was defined precisely by wt′(e′) = wt(e). There-
fore, the 0-cells contribute to M−A(H

′;C−
1 , . . . , C−

l ) by the same multiplicative factor as
the one considered in the previous paragraph. On the other hand, we obtain as before
that the contribution of the 1-cells is

∆
N+(−L1)
1 ∆

N+(−L2)
2 · · ·∆

N+(−Lk)
k , (2.3)

where −L denotes the restriction of −A to the line L. However, N+(−Li) = N−(Li) for
all i. Also, A ∈ ASP (H,G) implies that the quantity N+(L) − N−(L) is equal to τ(L).
Relation (2.1) follows then from (2.2) and (2.3).

Relation (2.1) is valid for all 2l orientations of the cycles in C. Therefore, since the
operation of reversing the orientation of all cycles in C permutes the 2l possible orientations,
we deduce from relation (2.1) that

MA(H) = ∆
τ(L1)
1 · · ·∆

τ(Lk)
k M−A(H

′),

where MA(H) denotes the generating function of matchings of H with corresponding ASP
A. Summing over A ∈ ASP (H,G) and using the fact that A 7→ −A is a bijection between
ASP (H,G) and ASP (H ′, G), we obtain by Lemma 2.2 the statement of the theorem. �

Remark 2.4. It is interesting to ask under what conditions does the Complementation
Theorem remain valid when H ′ is weighted by the original weight wt. All arguments in
the above proof go through for wt′ replaced by wt, except the conclusion of the paragraph
following (2.2). More precisely, if we weight H ′ by wt, it does not follow automatically
that the restriction of any µ′ ∈ M−A(H ;C−

1 , . . . , C−
l ) to the set of 0-cells has the same

weight as the restriction of any µ ∈ MA(H ;C+
1 , . . . , C+

l ) to the set of 0-cells.
Therefore, the statement of the Complementation Theorem is still valid for H ′ weighted

by the original weight wt, provided that wt(µ0) = wt(µ′
0) for all µ and µ′ as above, where

µ0 denotes the restriction of the matching µ to the set of 0-cells of G (recall that each
0-cell contributes one edge to µ and the opposite edge to µ′).

Remark 2.5. Even if the cells of G cannot be partitioned into disjoint lines, when
∆(c) is constant along each line we can prove that

M(H ; wt2) = M(H ′; (wt′)2)
∏

L∈L(G)

∆
τ(L)
L , (2.4)

where ∆L is the value of ∆ along L, wt2 represents the weight obtained by squaring every
edge-weight in wt, and L(G) is the set of lines of G.

Indeed, since each cell is contained in exactly two lines, we have for any matching µ of
H that
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wt2(µ) =
∏

L∈L(G)

wt(µ|L),

where µ|L is the restriction of µ to the cells of L. Using this formula and the arguments
in the proof of Theorem 2.1, we deduce that for all A ∈ ASP we have

MA(H ; wt2) = M−A(H
′; (wt′)2)

∏

L∈L(G)

∆
τ(L)
L .

Summing over A ∈ ASP we obtain (2.4).

3. The Aztec diamond

Regard ADn as a cellular graph and weight the cells in the i-th vertical line by assigning
the variables xi, yi, wi and zi to its four edges, starting with the northwestern edge and
going clockwise (the case n = 3 is illustrated in Figure 3.1; the array on the right indicates
the weight pattern on the edges). Denote the corresponding matching generating function
by M(ADn;x1, y1, z1, w1, . . . , xn, yn, zn, wn), or M(ADn;xi, yi, zi, wi) for short.

Theorem 3.1 (Stanley [12]).

M(ADn;xi, yi, zi, wi) =
∏

1≤i≤j≤n

(xiwj + ziyj). (3.1)

Proof. Since cells in the same vertical line are identically weighted, the function ∆ is
constant along vertical lines. Apply the Complementation Theorem with G = H = ADn

with respect to the partition of the set of cells consisting of vertical lines. The complement
H ′ is the subgraph of ADn induced by the set of non-extremal vertices, and is clearly
isomorphic to ADn−1. According to the definition of the complementary weight, it follows
that the four edges in each cell of the i-th vertical line of ADn−1 are weighted (clockwise,
starting with the northwestern edge) by xi, yi+1, wi+1 and zi (see Figure 3.2). Therefore,
the Complementation Theorem yields that

M(ADn;xi, yi, zi, wi) = M(ADn−1;xi, yi+1, zi, wi+1)

n
∏

i=1

(xiwi + ziyi). (3.2)

To prove formula (3.1), we proceed by induction n. For n = 1, the statement is clear.
Assuming the formula is true for the diamond of order n− 1, we obtain from (3.2) that
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M(ADn;xi, yi, zi, wi) =
n
∏

i=1

(xiwi + ziyi)
∏

1≤i<j≤n

(xiwj + ziyj)

=
∏

1≤i≤j≤n

(xiwj + ziyj).

This completes the induction. �

Remark 3.2. If we set xi = wi = 1 and yi = zi = q for i = 1, . . . , n, we recover a result
of [5]. The proof of Theorem 3.1 presented here appears to be new.

Remark 3.3. The Complementation Theorem can also be used to enumerate recur-
sively the matchings of two other families of graphs, namely, the “halved Aztec diamonds”
and the “quasi-quartered Aztec diamonds”; see [4].

We conclude this section by presenting a second multivariate version of the Aztec dia-
mond theorem.

Rotate the Aztec diamond so that its edges are horizontal and vertical. Given any
matching µ of ADn, the 0-cells in the ASP associated to µ can have one of the four types
N, S, E or W, according to the position of the edge of µ contained in that cell.

Group the cells of ADn in horizontal (resp., vertical) ribbons by collecting cells whose
centers have the same y- (resp., x-) coordinate.

Lemma 3.4. Consider an arbitrary matching of ADn. Then in any horizontal ribbon, the
number of 0-cells of type E equals the number of 0-cells of type W. A similar statement is
true about 0-cells of type N and S in vertical ribbons.

Proof. The set of matchings of the Aztec diamond is connected under the “elementary
move” which for a given matching replaces any two parallel edges contained in a 4-cycle
C by the other pair of parallel edges of C (see for example [16],[5] or [14]).

Since the statement of the Lemma is obviously true for the matching consisting entirely
of horizontal edges, it suffices to check that in any (say horizontal) ribbon, the above-
described elementary move preserves the difference between the number of 0-cells of type
E and those of type W.

If the 4-cycle C to which we apply the move is a cell, the 0-cells are not affected by
the move, so we have nothing to check. Suppose therefore that C is not a cell. Consider
first the case when the two edges of µ contained in C are vertical. Let R be the horizontal
ribbon containing C.

Then we have, up to symmetry, three different possibilities on the cells of R adjacent
to C: they are either both 0-cells, or both 1-cells, or one of them is a 0-cell and the other
a 1-cell. The three cases are illustrated in Figure 3.3, which also shows how the matching
is affected after the elementary move. It is readily seen that the difference between the
number of 0-cells of type E and W contained in R is not affected by the move.

The case when the two edges of the original matching contained in C are horizontal
follows by reading Figure 3.3 from right to left. �
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Define a weight wt on ADn as follows. Weight the horizontal edges in the i-th vertical
ribbon (counting from left) alternately by xi and yi (see Figure 3.4). Weight the vertical
edges in the i-th horizontal ribbon (counting from top) alternately by zi and wi (i =
1, . . . , 2n− 1). Denote by

M(ADn; wt) = M(ADn;x1, y1, . . . , x2n−1, y2n−1; z1, w1, . . . , z2n−1, w2n−1)

the matching generating function of ADn with respect to this weight.

Theorem 3.5. Suppose there exists a constant c such that xi+1yi+1 − xiyi = zi+1wi+1 −
ziwi = c, for i = 1, . . . , 2n− 2. Then

M(ADn,wt) =
∏

1≤i≤j≤n

(xjyj + zn−i+jwn−i+j) =
∏

1≤i≤j≤n

(a+ (n− i+ 2j)c), (3.3)

where a = x1y1 + z1w1 − 2c.

We note the resemblance of the above formula to Theorem 3.1.

Proof. By Lemma 3.4, the condition mentioned in Remark 2.4 is met in our case. Also,
the equality of the specified 4n− 4 numbers implies that the function ∆ is constant both
along the lines of ADn of slope 1 and along the lines of AD′

n of slope 1. Since AD′
n is

isomorphic to ADn−1, the variant of the Complementation Theorem mentioned in Remark
2.4 can be applied repeatedly.

To prove the first equality in (3.3), we proceed by induction on n. For n=1 the formula
is clearly true. Suppose it is true for the diamond of order n − 1. Apply the variant of
the Complementation Theorem presented in Remark 2.4 with both H and G chosen to be
ADn, with respect to the lines of slope 1. We obtain (see Figure 3.4) that

M(ADn;x1, y1, . . . ,x2n−1, y2n−1; z1, w1, . . . , z2n−1, w2n−1)

=

n
∏

j=1

(xjyj + zn+j−1wn+j−1)

·M(ADn−1; y2, x2, . . . , y2n−2, x2n−2;w2, z2, . . . , w2n−2, z2n−2).
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Figure 4.1 Figure 4.2

Using the induction hypothesis, the right hand side of the above relation can be suc-
cessively rewritten as

n
∏

j=1

(xjyj + zn+j−1wn+j−1)
∏

1≤i≤j≤n−1

(xj+1yj+1 + z(n−1)−i+j+1w(n−1)−i+j+1)

=

n
∏

j=1

(xjyj + zn+j−1wn+j−1)
∏

2≤i≤j≤n

(xjyj + zn−i+jwn−i+j)

=
∏

1≤i≤j≤n

(xjyj + zn−i+jwn−i+j),

thus completing the proof of the first equality in (3.3) by induction. The second equality
follows immediately using the fact that the 4n−4 numbers in the statement of the Theorem
are equal to c. �

4. Quartered Aztec diamonds

In [6] there are introduced three families of graphs called quartered Aztec diamonds
which can be described as follows.

Consider the Aztec diamond of order n (Figure 4.1 illustrates the case n = 8). We
can divide this graph into two congruent parts by deleting edges in a zig-zag pattern,
changing direction every two steps (see Figure 4.2). By superimposing two such “deletion”
paths that intersect at the center of the graph we divide it into four pieces; the resulting
subgraphs are called quartered Aztec diamonds (technically speaking, these are the dual
graphs of the planar regions called quartered Aztec diamonds in [6]).

Up to symmetry, there are two different ways we can superimpose the two deletion
paths. For one of them, the obtained pattern has fourfold rotational symmetry and the four
subgraphs are isomorphic (see Figure 4.3(a)); we call them rotationally quartered Aztec
diamonds. For the other, the resulting pattern has Klein 4-group reflection symmetry and
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there are two different kinds of subgraphs (see Figure 4.3(b)); they are called “abutting”
and “non-abutting” quartered Aztec diamonds.

In [6] there are obtained product formulas for the number of matchings of all three
kinds of quartered Aztec diamonds. Once these formulas are derived, it is noticed that
various of the obtained numbers differ only by a multiplicative factor of a power of two
(see relations (1)–(4) of [6]). Direct proofs, which are combinatorial to some extent, are
given in the same paper for relations (1), (3) and (4). We present a unified combinatorial
proof for all four relations based on the Complementation Theorem. This appears to be
the first direct proof of (2).

Consider the three types of quartered Aztec diamonds of order n. Delete all vertices
on which perfect matchings are forced (see Figures 4.3(a) and (b)). Denote by Rn, Ka,n

and Kna,n the graphs obtained this way from the rotationally quartered, abutting and
non-abutting quartered Aztec diamond of order n, respectively. The four relations in the
statement of the following Theorem are equivalent to equations (1)–(4) of [6].

Theorem 4.1. For all n ≥ 1 we have

M(R4n) = 2nM(R4n−1) (4.1)

M(Kna,4n+1) = 2nM(Kna,4n) (4.2)

M(Kna,4n) = 2nM(Ka,4n−1) (4.3)

M(Ka,4n−2) = 2nM(Kna,4n−3). (4.4)

In our proof we will employ the following result.

Lemma 4.2. Let G be a weighted graph having a 7-vertex subgraph H consisting of two
4-cycles that share a vertex. Let a, b1, b2, b3 and a, c1, c2, c3 be the vertices of the 4-cycles
(listed in cyclic order) and suppose b3 and c3 are the only vertices of H with neighbors
outside H. Let Ḡ be the subgraph of G obtained by deleting b1, b2, c1 and c2, weighted
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by restriction. Then if the product of weights of opposite edges in each 4-cycle of H is
constant, we have

M(G) = 2wt(b1, b2)wt(c1, c2)M(Ḡ).

Proof. The set of matchings of G can be partitioned in three classes (see Figure 4.4):
matchings containing {b1, b2}, {c1, c2}; matchings containing {b1, b2}, {c1, a}, {c2, c3}; and
matchings containing {c1, c2}, {b1, a}, {b2, b3}.

The matchings of the first class are clearly in bijection with the matchings of Ḡ. Their
contribution to M(G) is wt(b1, b2)wt(c1, c2)M(Ḡ).

The matchings of the second class are in bijection with the matchings of Ḡ in which a
is matched to c3. Indeed, let µ be a matching of G in the second class. The operation
of removing {b1, b2} and replacing the two edges {c1, a} and {c2, c3} by {a, c3} gives the
desired bijection. Thus the contribution of the second class to M(G) is

wt(b1, b2)wt(c1, a)wt(c2, c3)wt(a, c3)
−1M1(Ḡ) = wt(b1, b2)wt(c1, c2)M1(Ḡ),

where M1(Ḡ) is the generating function for matchings of Ḡ with a matched to c3 (we used
here our hypothesis about the products of weights of opposite edges in the 4-cycles of H).

The same argument shows that the contribution of the matchings of G in the third
class to M(G) is wt(b1, b2)wt(c1, c2)M2(Ḡ), where M2(Ḡ) is the generating function for
matchings of Ḡ with a matched to b3.

Since the G-neighborhood of a is contained in H , the Ḡ-neighborhood of a consists of b3
and c3. Therefore, the matchings in the second and third class contribute jointly to M(G)
the same amount as the matchings of the first class. We therefore obtain the statement of
the Lemma. �

Let H be a finite connected induced subgraph of the grid graph Z2; suppose H has no
vertices of degree one (from the point of view of matching enumeration we can make the
latter assumption without loss of generality). From the set of 4-faces with (centers having)
minimum x-coordinate, choose the 4-face c with maximum y-coordinate. Then H has two
cellular completions: in one of them c is a cell (call this the even cellular completion); in
the other it is not (call this the odd cellular completion). An example is shown in Figure
4.5.

Proof of Theorem 4.1. Consider the graphs appearing on the left hand side of equations
(4.1)–(4.4) and position them so that the corner of the Aztec diamond from which they
were obtained is pointing downward (see Figure 4.6).

12



Figure 4.5

(a). Obtaining R7 from R8. (b). Obtaining Ka,7 from Kna,8.

To prove (4.1), apply the Complementation Theorem to R4n (with unit weights on the
edges) with respect to its even cellular completion. This is illustrated in Figure 4.6(a) for
n = 2. (The cellular completion is the union of 4-cycles whose interiors are shaded (totally
or partially); the edges of the original graph are precisely those contained in the shaded
region).

However, the complement of R4n is isomorphic to R4n−1 (its boundary is pictured in
thick solid lines in Figure 4.6(a)). Since in R4n the only lines of slope 1 having nonzero
type are n lines of type 1, we obtain (4.1).

Similarly, by applying the Complementation Theorem to Kna,4n and Ka,4n−2 with re-
spect to their even cellular completion, one obtains (4.3) and (4.4), respectively (see Figures
4.6(b) and (c)).

To prove formula (4.2), apply the Complementation Theorem to Kna,4n+1 with respect
to its odd cellular completion (see Figure 4.6(d)). Consider the partition of this cellular
completion into lines of slope 1. Since the only lines of nonzero type are n lines of type
−1, we obtain

M(Kna,4n+1) = 2−nM(K ′
na,4n+1). (4.5)

Furthermore, in the graph K ′
na,4n+1 we have 2n opportunities to apply Lemma 4.2 (see

Figure 4.6(d)). However, the graph obtained from K ′
na,4n+1 after deleting the vertices

prescribed by Lemma 4.2 is isomorphic to Kna,4n. Thus relation (4.5) implies (4.2). �

The holey Aztec diamond is the graph obtained by removing the vertices of the central
4-cycle of the Aztec diamond (which we consider centered at the origin and placed so that
its lines of cells are parallel to the coordinate axes; see Figure 4.7). Let r denote the
rotation by 90◦ around the origin.

The following result is used in [3] to deduce a certain weighted enumeration of quarter-
turn invariant alternating sign matrices of order 4k − 1.

Theorem 4.2. The holey Aztec diamond of order 4k−2 has M(R4k−1) r-invariant perfect
matchings.
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(c). Obtaining Kna,9 from Ka,10. (d). Obtaining Kna,8 from Kna,9.
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Proof. Let G be the subgraph of the holey Aztec diamond induced by the vertices in
the (closed) first quadrant (see Figure 4.7; the boundary of G is shown in boldface). Label
the vertices of G on the coordinate axes as follows: label by 1 the two vertices closest to
the origin, by 2 the two next closest and so on, ending with two vertices labeled 2k − 2.
Then the r-invariant matchings of the holey Aztec diamond can be identified with the
matchings of the graph G̃ obtained from G by superimposing vertices with the same label.

The graph G̃ can be embedded in the plane so that it is a “symmetric graph” in the
sense of [3] (see Figure 4.8(a)). Then the argument in the proof of Theorem 7.1 of [3]
shows that

M(G̃) = 2k−1M(G̃1), (4.6)

where G̃1 is the graph obtained from G̃ by removing the dotted edges in Figure 4.8(a).

Another plane embedding of G̃1 is shown in Figure 4.8(b). Remove the vertices on which
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perfect matchings are forced; denote the resulting graph by G̃2.
Consider now the graph R4k−1 (positioned as the piece on the right of Figure 4.3(a))

and apply the Complementation Theorem with respect to its odd cellular completion (see
Figure 4.9). Since the only lines of slope 1 having nonzero type are k− 1 lines of type −1,
this yields a multiplicative factor of 2−(k−1). On the other hand, the complement R′

4k−1

provides 2k− 2 opportunities to apply Lemma 4.2, thus producing a multiplicative factor
of 22k−2. Moreover, the resulting graph is just G̃2. Therefore we obtain

M(R4k−1) = 2k−1M(G̃2). (4.7)

Since G̃1 and G̃2 clearly have the same number of matchings, the statement of the
Theorem follows from (4.6) and (4.7). �

5. Spanning trees

A natural generalization of the Aztec diamonds is the following. Consider a (2m+1)×
(2n + 1) chessboard with black corners. The graph whose vertices are the white squares
and whose edges connect precisely those pairs of squares that are diagonally adjacent is
called the (even) Aztec rectangle of order m × n, and is denoted ERm,n (we note that
this definition of the Aztec diamond differs from the one in [2]). The analogous graph
constructed on the black squares is called the odd Aztec rectangle of order m × n, and is
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denoted ORm,n. Note that ERn,n is just the Aztec diamond ADn; accordingly, ORn,n is
called the odd Aztec diamond of order n and is denoted ODn.

Stanley conjectured [13] that the number of spanning trees of ADn is precisely 4 times
the number of spanning trees of ODn. This has been later proved by Knuth [7], who
showed that in fact the result is true in the more general case of Aztec rectangles.

We present a weighted version of this result, which proves a particular case of the
recently solved more general conjecture of Chow [1]. In contrast to the proofs of Knuth
and Chow, which rely on linear algebra, our argument is combinatorial.

We will find it convenient to rotate the Aztec rectangles by 45◦ so that their edges are
horizontal and vertical. Define weights on the edges of the even and odd Aztec rectangles
as follows. Partition the edges in both m × n Aztec rectangles into staircase-like paths
that take alternating steps north and east, as indicated in Figure 5.1 for m = 2,n = 3.
Weight the edges contained in the i-th path from top by xi, for i = 1, . . . , 2m.

The weight of a spanning tree T of the weighted graph G is defined to be the product of
the weights of the edges of T . The spanning tree generating function of G, denoted t(G),
is the total weight of the spanning trees of G.

Theorem 5.1. For the above-described weight on the even and odd Aztec rectangles, we
have

t(ERm,n) =
2

x1

m
∏

i=1

x2i−1 + x2i

x2i + x2i+1
t(ORm,n),

where by definition x2m+1 = 0.

Our argument employs the following result due to Temperley (see [15] and Exercise
4.30 of [10]).

Let G be a finite connected weighted subgraph of the grid Z2 such that all finite faces
are unit squares. Color the vertices of G black. Divide each edge of G in two by inserting
green vertices at their midpoints; weight both newly formed edges by the weight of the
original edge. Divide each face of G in four by inserting a red vertex at its center and
joining it to the green vertices on its boundary by edges of weight 1. Let G̃ be the graph
on the black, green and red vertices obtained in this fashion.

Lemma 5.2. If v is a black vertex on the boundary of G̃, then there is a weight-preserving
bijection between the spanning trees of G and the perfect matchings of G̃ \ {v}.
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Proof. Regard G as being the graph on the black vertices of G̃; let T be a spanning tree
of G (see Figures 5.2(a) and (b)). For any black vertex x 6= v, let x′ be the first green
vertex encountered along the unique path joining x to v in T .

Next, note that if we include an extra red vertex u for the infinite face of G (adjacent
to the green vertices on the edges of the boundary of G), the red vertices are the vertices
of a spanning tree T ∗ (dual to T ) of the dual graph of G. For any red vertex y 6= u, let y′

be the first green vertex encountered along the unique path joining y to u in T ∗.
The collection µT consisting of the edges {x, x′}, {y, y′} with x (resp., y) running over

black vertices different from v (resp., red vertices different from u) is clearly a perfect

matching of G̃ \ {v}. Furthermore, the weight of µT is equal to the weight of T .

Conversely, let µ be a perfect matching of G̃\ {v}. Let Tµ be the subgraph of G formed
by the edges containing some member of µ. Since the members of µ contained in edges of
G are precisely those incident to black vertices, Tµ has V (G)− 1 edges.

To show that Tµ is a spanning tree of G it is therefore enough to prove that Tµ contains
no cycle. Suppose this is not the case and let C be a cycle without self-intersections. By
induction on the length of C we see that the number of vertices of G̃ encircled by C is odd.
Since the removed vertex v belongs to the boundary of the infinite face, it follows that C
encircles an odd number of vertices of G̃ \ {v}. However, these cannot be matched by µ, a
contradiction. Therefore, Tµ is a spanning tree of G, and its weight is clearly equal to the
weight of µ.

Since the maps T 7→ µT and µ 7→ Tµ are inverse to one another, we obtain the statement
of the Lemma. �

The following variation of the above lemma will also be relevant in our proof.
Let G be as in the statement of Lemma 5.2; let wtG be its weight function. Consider

the partition of the edges of the grid Z2 into staircase-like paths taking alternating steps
north and east. Weight the edges of G contained in such a staircase P by xP .

Let G̃1 be the graph obtained from G̃ by “reshuffling” the weights as follows. Give each
edge connecting a red vertex r to a green vertex g the weight of the edge of G contained
in the 4-face centered at r and opposite the edge of G containing g (see Figure 5.3). Give
weight 1 to all edges connecting a black vertex to a green vertex.

Let v be a black vertex on the boundary of G̃1. Let ϕ be the bijection of Lemma 5.2
between the spanning trees of G and the perfect matchings of G̃1\{v}. Denote by wtG̃1\{v}

the weight on G̃1\{v} obtained by restriction from the weight of G̃1 defined in the previous
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It turns out that even though we have reshuffled the weights on G̃, ϕ is still weight-
preserving, up to a multiplicative factor.

Lemma 5.3. The quotient wtG̃1\{v}
(ϕ(T ))/wtG(T ) is the same for all spanning trees T

of G.

Proof. The set of spanning trees of a graph is connected under the operation consisting
of removing an edge of a spanning tree and including some other edge of the graph so as
to form another spanning tree. Therefore, it suffices to show that if T ′ was obtained from
T by such an operation, then

wtG̃1\{v}
(ϕ(T ′))/wtG(T

′) = wtG̃1\{v}
(ϕ(T ))/wtG(T ). (5.1)

The edges in the matching ϕ(T ) are of two types: edges contained in T , which we will
call of type I, and edges lying along T ∗, which we will call of type II. By our definition,
wtG̃1\{v}

(ϕ(T )) is determined by the edges of ϕ(T ) of type II.

Therefore, to compare wtG̃1\{v}
(ϕ(T )) and wtG̃1\{v}

(ϕ(T ′)) it is enough to determine

how they differ on the edges of type II.

Let {e} = T \ T ′, {f} = T ′ \ T . Then T ′∗ is obtained from T ∗ by including e∗ and
removing f∗ (e∗ is the edge of G∗ dual to e). The inclusion of e∗ creates a cycle C∗; f∗

must lie along this cycle. Note also that C∗ contains the vertex ∞ corresponding to the
infinite face of G (indeed, the inclusion of e∗ in T ∗ corresponds to the removal of e from
T ; the remaining subgraph of T consists of two disjoint trees, and C∗ corresponds to a
contiguous sequence of faces of G separating the two trees).

By the definition of ϕ it follows that the edges of type II in ϕ(T ) and ϕ(T ′) differ only
along the path P of C∗ which connects e∗ to f∗, avoiding ∞. We can further specify this
difference as follows.

Note that each edge of the dual graph G∗ not containing ∞ accounts for two edges in
G̃1 \ {v}. Therefore, we can regard P as a path in G̃1 \ {v} connecting the midpoint of e

to the midpoint of f . It follows that there are an even number of edges of G̃1 \ {v} in P .

The difference between the edges of type II in ϕ(T ) and ϕ(T ′) is then the following:
ϕ(T ) contains the alternating set of edges of P matching the ending point of P , while
ϕ(T ′) contains the alternating set of edges of P matching the starting point of P .

We can now restate relation (5.1) as follows. Consider the graph U = Z2 and divide
each edge in two by inserting a new vertex at its midpoint. Denote the resulting graph
by S.

Partition the edges of the dual graph U∗ into staircase-like paths taking alternately steps
north and east (see Figure 5.4(a)). For each edge e∗ of U∗ let Me∗ be the set consisting
of the two edges of S perpendicular to e∗ and with endpoints at distance 1/2 and 1 from
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the midpoint of e∗. For each staircase P in U∗ let each edge in ∪
e∗∈P

Me∗ have weight xP

(see Figure 5.4(b)).

To prove (5.1), it suffices to show that for any path of S having (distinct) edges
e1, . . . , e2n connecting two vertices a, b ∈ V (S) \ V (U), we have
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Figure 5.5

wt(e1)wt(e3) · · ·wt(e2n−1)

wt(e2)wt(e4) · · ·wt(e2n)
=

xQ

xP
, (5.2)

where P and Q are the staircases of U∗ containing a and b, respectively. Indeed, as we
have seen above, the ratio between wtG̃1\{v}

(ϕ(T ′)) and wtG̃1\{v}
(ϕ(T )) can be written

in the form of the left hand side of (5.2) (in this case, a and b are the midpoints of e and
f , respectively). On the other hand, since T ′ was obtained from T by removing e and
including f , wtG(T

′)/wtG(T ) equals the right hand side of (5.2).

However, V (S) \V (U), the staircases of U∗ and the weight on S are all invariant under
reflections in lines of slope −1 through the vertices of U . Since by means of such reflections
we can render straight our path connecting a to b, it suffices to prove (5.2) in the case
when all the edges in this path are horizontal. As the sequence of edge-weights (wt(ei))
in this case is of type

. . . , x1, x−1, x2, x1, x3, x2, x4, x3, x5, x4, x6, x5, x7, x6 . . . ,

and since xQ = wt(e2n−1), xP = wt(e2), relation (5.2) is clearly true in this case. �

Proof of Theorem 5.1. Let E = Em,n be the graph obtained from ERm,n after applying
the construction in Lemma 5.2, with the deleted vertex chosen to be the upper endpoint
of the topmost line of slope 1 in ERm,n (for m = n = 2, this is illustrated in Figure 5.5).
It suffices show that

M(E) = 2

m
∏

i=1

(x2i−1 + x2i)

x1x2m

m−1
∏

i=1

(x2i + x2i+1)

t(ORm,n). (5.3)

Consider the even cellular completion of E (see Figure 5.6(a)). Note that the function
∆ is constant along its lines of slope 1: it equals 2xi along the i-th line from top. Also, the
first two lines from top have type zero, and all others have type −1. Denoting by E′ the
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complement of E with respect to the chosen cellular completion, the Complementation
Theorem yields

M(E) = (2x1)
0(2x2)

0(2x3)
−1 · · · (2x2m)−1M(E′). (5.4)

In the graph E′ we have 2m− 1 opportunities to apply Lemma 4.2 (see Figure 5.6(b)).
Let F be the graph obtained from E′ after deleting the 2m − 1 quadruples of vertices
prescribed in the statement of Lemma 4.2 (F , together with its cellular completion, is
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pictured in Figure 5.6(c)). We obtain

M(E′) = (2x1x2)(2x3x4)
2 · · · (2x2m−1x2m)2M(F ). (5.5)

Next, apply the Complementation Theorem to F and its even cellular completion. In
each cell of the top n−1 lines of slope 1 of this cellular completion, assign to the edges not
contained in F weights 1 and x1 such that the weight pattern is symmetric with respect
to a straight line of slope 1 (see Figure 5.6(c)). Weight the edges in the bottom n− 1 lines
not contained in F in a similar fashion, by 1’s and x2m’s. Then, starting from the top, the
lines of slope 1 of this cellular completion are as follows: n− 1 lines of type −1 on which
∆ takes value 2x1; 2m− 1 lines whose types are alternately 1 and −1, with the value of ∆
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equal to (xi + xi+1) on the i-th of them; and n− 1 lines of type −1 along which ∆ equals
2x2m.

Therefore, the Complementation Theorem gives

M(F ) = (2x1)
−(n−1)(x1 + x2)(x2 + x3)

−1(x3 + x4) · · · (x2m−1 + x2m)

·(2x2m)−(n−1)M(F ′). (5.6)

In the graph F ′ we have 2(n − 1) occasions to apply Lemma 4.2 (see Figure 5.6(d)).
Let H be the resulting graph. We obtain

M(F ′) = (2x2
1)

n−1(2x2
2m)n−1M(H). (5.7)

Relations (5.4)–(5.7) imply

M(E) = 2xn
1x2x3 · · ·x2m−1x

n
2m

(x1 + x2)(x3 + x4) · · · (x2m−1 + x2m)

(x2 + x3)(x4 + x5) · · · (x2m−2 + x2m−1)
M(H). (5.8)

However, H is precisely the graph obtained from ORm,n by removing the four leaves and
then applying the construction involved in Lemma 5.3. We deduce by this Lemma that
M(H) and t(ORm,n) differ only by a multiplicative factor. This factor can be determined
for example by choosing T to be the spanning tree of ODm,n consisting of all its horizontal
edges together with all “leftmost” vertical edges. We obtain

M(H) = x
−(n+1)
1 x−1

2 x−1
3 · · ·x−1

2m−1x
−(n+1)
2m t(ORm,n),

which combined with (5.8) proves relation (5.3) and hence the statement of the theorem.
�

6. Alternating sign matrices

The ASP’s having the shape of an Aztec diamond are known as alternating sign matri-
ces. The problem of determining the number of alternating sign matrices of a given order
turned out to be among the hardest in enumerative combinatorics. In 1983, Mills, Rob-
bins and Rumsey [11] conjectured that this number is given by a certain simple product
formula. This was first proved by Zeilberger [18] and later by Kuperberg [8].

Let ASM(n) be the set of alternating sign matrices of order n. Weight each A ∈
ASM(n) by xN−(A) and let An(x) be their generating function. It turns out that for x = 2
we can determine various refinements of An(x) using the Complementation Theorem.

Indeed, taking all weights in Theorem 3.1 to be 1 we obtain An(2) = 2(
n

2). Furthermore,
let An,k(x) be the generating function of those matrices in ASM(n) whose unique 1 in the

first row is in position k. It is proved in [11] that An,k(2) = 2(
n−1

2 )(n−1
k−1

)

(see [5] for an

alternative proof); this also follows from the more general result presented below.
Refining further the generating function under consideration, let An,k,h(x) be the gen-

erating function of alternating sign matrices of order n in which the unique 1’s in the first
and last row occupy positions k and h, respectively (1 ≤ k, h ≤ n).
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Theorem 6.1. For n ≥ 2 we have

An,k,h(2) = 2(
n−2

2 )
((

n− 2

k − 1

)(

n− 2

h− 2

)

+

(

n− 2

k − 2

)(

n− 2

h− 1

))

.

Proof. For n = 2 the formula is clearly true. Suppose therefore n ≥ 3. Consider the
cellular graph consisting of the middle n− 2 horizontal lines of cells of ADn. Label its top
and bottom n vertices consecutively from left to right by 0, 1, . . . , n− 1. Let Hn−1,k,h be
the subgraph obtained by deleting the vertex labeled k in the top row and the one labeled
h in the bottom row (an example is shown in Figure 6.1). Via the correspondence between
ASM ’s of order n and matchings of ADn described in the proof of the Complementation
Theorem, we obtain that

An,k,h(2) = 22−nM(Hn−1,k−1,h−1). (6.1)

Now apply the Complementation Theorem to Hn,k,h with respect to the cellular com-
pletion consisting of the middle n − 1 horizontal lines of cells of ADn+1. Let x and y be
the highest and lowest vertices of the complement of Hn,k,h (see Figure 6.2). Since they
both have degree two, the matchings of H ′

n,k,h are divided in four classes according to the
position of the edges matching x and y. However, each of these four classes is in bijection
with the matchings of some graph Hn−1,i,j . More precisely, we obtain

M(Hn,k,h) = 2n−1(M(Hn−1,k−1,h−1) +M(Hn−1,k−1,h)

+M(Hn−1,k,h−1) +M(Hn−1,k,h))

(in case k or h is out of the range {0, . . . , n}, M(Hn,k,h) is taken to be zero.)

If we define gn,k,h := M(Hn,k,h)/2
(n2), we can rewrite the last equation as

gn,k,h = gn−1,k−1,h−1 + gn−1,k−1,h + gn−1,k,h−1 + gn−1,k,h. (6.2)

Consider the numbers an,k,h given by

an,k,h :=

(

n− 1

k

)(

n− 1

h− 1

)

+

(

n− 1

k − 1

)(

n− 1

h

)

.
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These numbers are readily seen to satisfy the same recurrence as the gn,k,h’s. Further-
more, it can be easily checked that g3,k,h = a3,k,h for all k and h. Therefore gn,k,h = an,k,h
for all n and we obtain from (6.1) the statement of the theorem. �

7. Fortresses

Consider the tiling of the plane by squares and regular octagons. Regard this tiling as
a graph and let Gn be the subgraph induced by the vertices of n2 4-cycles placed in an
n× n array (G4 is shown in Figure 7.1).

Add a leaf to every other vertex on each side of the boundary of Gn so that the two
vertices in a corner end up having the same degree. For even n, this can be done in only
one way up to isomorphism; let Fn denote the resulting graph. When n is odd, we obtain
two essentially different graphs, which we denote by Fn and F ′

n (by definition the former
has leaves added to all corner vertices of Gn). The graphs obtained this way are called
fortress graphs (or simply fortresses). The fortresses of order 4 and 5 are illustrated in
Figure 7.2.

The statement of the following Theorem was first conjectured by Propp and later proved
by Yang [17] using the permanent-determinant method (see e.g. [10] for a description of
this method).

Theorem 7.1 [Yang]. For n ≥ 1 we have
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M(F2n) = 5n
2

(7.1)

M(F4n+1) = 52n(2n+1) (7.2)

M(F4n−1) = 2 · 52n(2n−1) (7.3)

M(F ′
4n+1) = 2 · 52n(2n+1) (7.4)

M(F ′
4n−1) = 52n(2n−1) (7.5)

In this section we deduce this result as a consequence of the Complementation Theorem.
This appears to be the first combinatorial proof of Yang’s result.

In our proof we use the following observation due to Kuperberg [9], an instance of a
principle called “urban renewal”. Suppose a graph G has a subgraph isomorphic to the
graph H shown in Figure 7.3(a) (all edges of H have weight 1). Suppose also that the
vertices a, b, c and d have no neighbors outside H . Let Ḡ be the graph obtained from G
by replacing H by the graph H̄ shown in Figure 7.3(b) (dashed lines indicate edges of
weight 1/2). Then an analysis of the restrictions of matchings of G and Ḡ to H and H̄ ,
respectively, shows that we have

M(G) = 2M(Ḡ). (7.6)

The above equality remains true when H and H̄ are replaced by the pairs of graphs
shown in Figures 7.4(a) and (b).

Proof of Theorem 7.1. Each matching of F2n has 4n forced edges along the boundary.
Apply the urban renewal trick described above 2n2 times to the graph obtained from F2n

after removing the forced edges (see Figure 7.5(a); when removing an edge we also remove
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both its endpoints). The resulting graph is isomorphic to AD2n−1, with half of its edges
weighted by 1/2 (see Figure 7.6). Therefore, (7.6) implies

M(F2n) = 22n
2

M(AD2n−1; wt), (7.7)

where wt is the weight indicated in Figure 7.6. Since AD2n−1 and wt meet the conditions
in the hypothesis of the Complementation Theorem, we obtain

M(AD2n−1; wt) = (1 + (1/2)2)2n−1M(AD2n−2; wt
′), (7.8)

where wt′ is the weight indicated in Figure 7.7. However, when performing urban renewal
(2n − 2)2/2 times to F2n−2 without removing forced edges, one obtains an isomorphic
weighting of AD2n−2 (see Figure 7.5(b)): it is obtained from the one in Figure 7.7 by
rotation by 180 degrees. Therefore, (7.7), (7.8) and (7.6) imply

M(F2n) = 2(2n
2−(2n−2)2/2) · (5/4)2n−1M(F2n−2)

= 52n−1M(F2n−2).

Repeated application of this relation yields (7.1).
Similar arguments lead to the recurrences

M(F2n+1) = 52nM(F ′
2n−1)

and
M(F ′

2n+1) = 52nM(F2n−1),

for all n ≥ 1. Since M(F1) = 1 and M(F ′
1) = 2, we obtain (7.2)-(7.5). �
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