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Abstract. Let n be even and denote by f(n) the number of domino tilings of a cube of side
n. The three dimensional dimer problem is to determine the limit ℓ3 := limn→∞(log f(n))/n3

(which is known to exist). The best previously known upper bound was found by Minc and
is 1/12 log 6! = 0.54827.... In this paper we improve this bound to 0.463107.

1. Introduction

The dimer problem, which in dimension three is one of the classical unsolved problems
in solid-state chemistry, is the following. Define an brick to be a d-dimensional (d ≥ 2)
rectangular parallelepiped with sides of integer lengths; we will always assume its volume
to be even. A brick of volume 2 is called a dimer. The problem is to determine the number
f(a1, . . . , ad) of dimer tilings of the brick with sides of lengths a1, . . . , ad.

It is remarkable that for d = 2 this number can be expressed in closed form, as was
shown independently by Fisher, Kasteleyn and Temperley (see [14] and [6]). In contrast,
for d ≥ 3 no such formulas are known. Moreover, the number of dimer tilings of a brick of
dimension at least three is not known even asymptotically. More precisely, Hammersley
proved [4] that the sequence 1/(a1 · · · ad) log f(a1, . . . , ad) approaches a finite limit ℓd as
ai → ∞, i = 1, . . . , d. However, the exact value of ℓd is not known for d ≥ 3. The most
important case for applications is the case d = 3 [5][7].

Various upper and lower bounds for ℓ3 have been proved starting as far back as six
decades ago, when Fowler and Rushbrooke [3] showed (assuming, based on physical and
heuristic arguments, that the limit defining ℓd exists) that

0 ≤ ℓ3 ≤ 1

2
log 3 = 0.54931...

This upper bound was improved by Minc [8] to 1/12 log 6! = 0.54827..., which represents
the best upper bound previously known.



On the other hand, since ℓd is clearly a nondecreasing function of d, one obtains that
a lower bound for ℓ3 is given by ℓ2, which was determined by Fisher, Kasteleyn and
Temperley to be

ℓ2 = 1/π
∑

r≥0

(−1)r/(2r + 1)2 = 0.29156...

This lower bound has been improved several times, first by Fisher [1] to 0.30187, then
by Hammersley [5] to 0.418347 and finally by Priezzhev [11] to 0.419989. A conjecture
due to Schrijver and Valiant on lower bounds for permanents* [13] would imply, as noted
by Minc [9], that ℓ3 ≥ 0.440075.

Nagle [10] obtained the heuristic estimate of 0.446 for the actual value of ℓ3.
The main purpose of this paper is to prove the following result.

Theorem1.1. ℓ3 ≤ 0.463107.

Our proof employs the transfer matrix method to encode the dimer tilings of a (toroidal)
brick as closed walks in a certain graph. Using the transfer matrix theorem we obtain a
family of upper bounds for ℓ3 expressed in terms of the largest eigenvalues of our graphs.
The problem is then reduced to determining (or finding a good upper bound for) the
largest eigenvalue of a certain nonnegative symmetric matrix of order 216. To this end,
we take advantage of a certain group G of permutation matrices which commute with our
matrix. It turns out that the eigenvalue we need to estimate is the same as the largest
eigenvalue of the action of our matrix on the subspace of G-invariants. This is given by
a sparse nonnegative matrix A of order 222. Finally, we use an elementary way to obtain
upper bounds for the largest eigenvalue of A in terms of the trace of even powers of A.
The bound in Theorem 1.1 is obtained by computing the 16-th power of A. We also show
that knowledge of the exact value of the largest eigenvalue of A could improve the upper
bound by at most lowering the last digit from 7 to 5.

From the above outline of our proof it might seem that the success of our approach
is conditioned by the progress in computational power that occurred since the previous
upper bounds have been found. However, it turns out that one can derive by our method
the already improved upper bound of 0.519093, and the largest computation involved in
the process is finding the trace of the fourth power of a sparse matrix of order 22.

Our approach to this problem seems not to have been considered before. In contrast
to Minc’s method, which used a general inequality for permanents to deduce an upper
bound for ℓ3, our setup allows one to take advantage of the specific problem at hand. It
is probably this fact that accounts for the significant improvement in the upper bound.

2. A family of upper bounds

Let ft(k, l, n) be the number of dimer tilings of the toroidal brick T (k, l, n) of sides k, l
and n. Clearly, f(k, l, n) ≤ ft(k, l, n), and therefore

*Recently, Schrijver has proved this conjecture (see A. Schrijver, “Counting 1-factors in regular bipartite
graphs,” J. Combin. Theory Ser. B, 72 (1998), 122–135).
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ℓ3 ≤ lim
n→∞

1

n3
log ft(n) (2.1)

(here ft(n) stands for ft(n, n, n), and n is even). In fact, it follows from the results in [4]
that equality holds in (2.1), but this will not be needed in our proof.

Define a weighted directed graph S as follows. Take the set of vertices of S to be the set
of k by l 0-1 matrices. For two such matrices s and t, define the weight of the edge from
s to t to be zero unless the supports of s and t are disjoint. If the supports are disjoint,
consider a k × l toroidal brick (i.e., a toroidal chessboard) and remove from it the unit
squares corresponding to nonzero entries of s and t; define the weight of the edge from s
to t to be the number of dimer coverings of the leftover part.

Let λ
(i)
k×l, i = 1, . . . , 2kl, be the eigenvalues of the adjacency matrix M of S. Since this

is a nonnegative matrix, by the Perron-Frobenius theorem its largest eigenvalue is real
and positive. Denote it by λk×l. Note also that it follows from the definition that M is
symmetric, and hence all its eigenvalues are real.

Proposition 2.1.

ft(k, l, n) =

2kl

∑

i=1

(

λ
(i)
k×l

)n

.

Proof. Let T be a dimer tiling of the toroidal brick T (k, l, n). Regard our brick as a
stack of n horizontal layers, each consisting of a k × l toroidal array of unit cubes. In
each such layer, write 1’s in the unit cubes covered by a dimer extending into the next
layer above (for the top layer, dimers extending into the bottom layer); write zeroes in the
remaining unit cubes. In this way, our tiling is associated a closed walk C on n steps in
the graph S. By the definition of S, the weight of C (i.e., the product of the weights of
its steps) is equal to the number of tilings of T (k, l, n) whose associated closed walk is C.

Therefore, ft(k, l, n) is just the total weight of closed walks on n steps in S (if e1e2 · · · en
is a closed walk, then eiei+1 · · · ene1 · · · ei−1 is in general a different closed walk). Since by
the transfer matrix theorem (see e.g. [12]) this is just the trace of Mn, the statement of
the Proposition follows. �

Lemma 2.2. If l and n are even, we have

1

kn
logλk×n ≤ 1

n
log 2 +

1

kl
logλk×l.

Proof. Since all eigenvalues are real and l and n are even, we obtain using Proposition
2.1 that
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(λk×n)
l ≤

2kn

∑

i=1

(

λ
(i)
k×n

)l

= ft(k, n, l)

= ft(k, l, n)

=

2kl

∑

i=1

(

λ
(i)
k×l

)n

≤ 2kl (λk×l)
n
.

The desired inequality follows by taking the logarithms of the extreme terms above and
dividing through by kln. �

Proposition 2.3. For even k and l, we have

ℓ3 ≤ 1

kl
logλk×l.

Proof. Let n be even and set k = l = n in Proposition 2.1. Since all the eigenvalues are
real, we obtain

ft(n) =

2n
2

∑

i=1

(

λ
(i)
n×n

)n

≤ 2n
2

(λn×n)
n
.

Taking the logarithm on both sides and dividing through by n3 we deduce

1

n3
log ft(n) ≤

1

n
log 2 +

1

n2
logλn×n. (2.2)

Setting l = k, k = n in Lemma 2.2 one obtains

1

n2
logλn×n ≤ 1

n
log 2 +

1

kn
logλk×n. (2.3)

By (2.2), (2.3) and Lemma 2.2 it follows that

1

n3
log ft(n) ≤

1

n
log 2 +

1

n2
logλn×n

≤ 2

n
log 2 +

1

kn
logλk×n

≤ 3

n
log 2 +

1

kl
logλk×l.

Since this is true for all even n, the statement of the Proposition follows from (2.1). �
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Remark 2.4. In fact, the arguments in [2] imply that

lim
n→∞

1

n3
ft(n) = lim

n→∞

1

kl
logλk×l.

Therefore, since by [4] equality holds in (2.1), we obtain that ℓ3 is the limit of the upper
bounds of Proposition 2.3, as k, l → ∞.

One can expect, in view of Remark 2.4, that as the values of k and l in Proposition 2.3
increase, the upper bounds get closer to the actual value of ℓ3. For k = 2, l = 4 we obtain
the already improved bound of 0.518971 (it is interesting that the slightly weaker bound
of 0.519093 can be obtained without using the computer; see Section 5). For k = 2, l = 6,
only the relatively small improvement to 0.513456 is obtained. However, k = l = 4 yields
the bound in Theorem 1.1.

3. Estimation of λ4×4

Consider the graph S defined in the previous section. Denote its incidence matrix by
M .

Let s and t be two vertices of S (i.e., two k by l matrices with entries 0 or 1) and
suppose the (s, t) entry of M is nonzero. By the definition of S, this means that the
supports of s and t are disjoint, and moreover, the board obtained from a k by l toroidal
chessboard by removing the squares corresponding to the nonzero entries of s and t has at
least one dimer covering. This clearly implies that the numbers of 1’s in s and t have the
same parity. Therefore, M is the direct sum of the incidence matrix of the subgraph of S
consisting of vertices with an even number of 1’s and the incidence matrix corresponding
to vertices with an odd number of 1’s; denote these two matrices by A and B, respectively.

Let F be the set of vertices of S involving an even number of 1’s. Regard A as a linear
transformation on the vector space V with basis F .

Let G be a group of symmetries of a k by l toroidal chessboard. The group G acts in a
natural way by permutations on F . Extend this linearly to an action on V .

Lemma 3.1. The matrix A commutes with the action of G on V .

Proof. It suffices to check that for each vector s ∈ F we have g ·A(s) = A(g · s), for all
g ∈ G. This follows from the fact that g is a symmetry of the toroidal board. �

The following result is quite possibly known, but we were not able to find it in the
literature.

Lemma 3.2. If N is a nonnegative matrix that commutes with a group of permutation
matrices G, then the largest eigenvalue of N is the same as the largest eigenvalue of N
acting on the subspace of G-invariants.

The elegant argument given below is due to Phil Hanlon. Our original formulation of
Lemma 3.2 assumed that G is abelian, and the proof used character theory (this weaker
version suffices to prove Theorem 1.1, but a considerable amount of computational time
can be saved using the stronger version).

5



Proof. By the Perron-Frobenius theorem we know that the eigenvalue λ of largest abso-
lute value is real and positive, and among the eigenvectors of this eigenvalue there is one
with nonnegative coordinates; denote it by v. Define

v0 =
1

|G|
∑

g∈G

g · v. (3.1)

Since N commutes with G, v0 is also an eigenvalue for λ, and it is clear that v0 is G-
invariant. Moreover, since the coordinates of g ·v are a permutation of the coordinates of v,
it follows from (3.1) that for any coordinate of v that is strictly positive, the corresponding
coordinate of v0 is also strictly positive, so in particular v0 is nonzero. �

Let O1, O2, . . . , Op be the orbits of the action of G on F . For 1 ≤ i ≤ p define

vi =
1

|G|
∑

g∈G

g · ei,

where ei is some fixed element of Oi, i = 1, . . . , p. Since the subspace V G of G-invariants
is the image of the projection φ : V → V , φ = (1/|G|)

∑

g∈G g, the vectors vi form a basis

for V G. Since by Lemma 3.1 A commutes with G, V G is invariant under A. The matrix
of the restriction of A to V G is given by

Avi =
1

|G|A





∑

g∈G

g · ei





=
1

|G|
∑

g∈G

g ·Aei

=
1

|G|
∑

g∈G

g ·
(

n
∑

m=1

aimem

)

=
n
∑

m=1

aim
1

|G|
∑

g∈G

g · em

=

p
∑

j=1





∑

m∈Oj

aim



 vj , (3.2)

where n is the order of the matrix A.
Therefore, by Lemma 3.2, in order to estimate the largest eigenvalue of A it suffices to

estimate the largest eigenvalue of the matrix AG whose (i, j) entry equals
∑

m aim, the
sum running over the elements of the orbit Oj .

Let k = l = 4. It is easy to see that there exists a group of symmetries of the 4 × 4
toroidal chessboard isomorphic to the semidirect product of C4 × C4 with D8, where C4
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is the cyclic group of order 4 and D8 is the dihedral group of order 8 (the three factors
correspond to shifting the toroidal board vertically and horizontally, and to the symmetry
group of a square).

However, the full symmetry group is in fact three times larger than this. Indeed,
the 4 × 4 toroidal chessboard is, quite remarkably, isomorphic to the four-dimensional
hypercube (this useful observation is due to the referee). Therefore, its symmetry group is
isomorphic to the semidirect product of (C2)

4 with the symmetric group S4 (the first four
factors correspond to reflections across hyperplanes parallel to the coordinate hyperplanes,
while the last one corresponds to permuting the four coordinate axes). Choose G to be
this group.

The family F consists of 215 vectors. It turns out that the action of G on these vectors
has 222 orbits, so the matrix AG whose largest eigenvalue we need to estimate is of order
222. Exact calculation of the eigenvalues of a matrix of this size is beyond the capabilities
of (at least most) present-day computers. To resolve this we employ the following simple
result.

Lemma 3.3. Let C be a nonnegative matrix and let λ be its largest eigenvalue. If all
eigenvalues of C are real, then for all i ≥ 1 we have

(a) λ ≤ tr(C2i)1/2i

(b) λ2 ≥ tr(C2i+2)/tr(C2i).

Proof. Let λ1, . . . , λq be the eigenvalues of C. Since they are real, we have

tr(C2i) =

q
∑

j=1

(λj)
2i ≥ λ2i.

To obtain (b), notice that since λ is the largest eigenvalue, one has

tr(C2i+2) =

q
∑

j=1

(λj)
2i+2

≤
q
∑

j=1

λ2(λj)
2i

= λ2tr(C2i).

�

Since AG is sparse, its powers can be found in a reasonable time using the computer
(we are indebted to John Stembridge for writing an efficient program to this end). The
traces of the first 16 powers of AG were found in about 24 minutes of CPU time. The
traces of the 14-th and 16-th powers are

t14 = 1126977601503291741399637139638752100045480750

t16 = 3075161475953781009986362817937907270093976213987550.
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Applying Lemma 3.3 to AG, we obtain that the largest eigenvalue λA of A satisfies

1651.87 · · · =
(

t16
t14

)1/2

≤ λA ≤ (t16)
1/16 = 1651.93 . . . (3.3)

The matrix B corresponding to the vertices of S with an odd number of 1’s can be anal-
ized in a completely analogous way. Its G-invariant part BG turns out to have order 181.
The trace of the square of BG is found with the computer to be

t′2 = 2199876.

Lemma 3.3(a) with i = 1 implies therefore that

λB ≤
√
2199876 < 1484 < λA.

Thus λ4×4 = λA. Theorem 1.1 follows then from the upper bound in (3.3) and Propo-
sition 2.3. From the lower bound in (3.3) it follows that (1/16) logλ4×4 > 0.463104, and
therefore the precise knowledge of λ4×4 could bring only a very slight improvement on the
bound from Theorem 1.1.

4. Higher dimensions and other dimer enumeration problems

The ideas in Section 2 can be generalized without difficulty to the case of a d-dimensional
brick. The only limitation is that the number of vertices in the corresponding graph Sd

increases very fast with d, and therefore the size of the matrices whose largest eigenvalues
we need to estimate quickly go beyond the capabilities of (at least today’s) computers.
However, we do obtain an improvement on the upper bound for ℓ4 at a very small expense
of computation time (in fact, as we will discuss below, this could almost be worked out
by hand). We also indicate how this bound could be improved further by performing a
longer computer calculation. Finally, we point out another feasible computer calculation
that would quite likely improve the best known upper bound for ℓ5. However, since from
the perspective of applications almost all attention seems to be concentrated on the three-
dimensional case, we did not carry out these computations.

In analogy to Section 2, define the graph S = Sd to have its vertex set consisting of
(d − 1)-dimensional arrays of 0’s and 1’s, the dimensions of the array being a1, . . . , ad−1.
Define the edge-weights of S in analogy to the definition in Section 2.

Let a denote the vector (a1, . . . , ad−1). Let λa be the largest eigenvalue of the incidence
matrix of S. The following result can be proved using arguments similar to the ones in
Section 2.

Proposition 4.1. For even a1, . . . , ad−1, we have

ℓd ≤ 1

a1 · · ·ad−1
logλa.

Let d=4 and choose a1 = a2 = a3 = 2. The incidence matrix M of S is again (as in
Section 3) the direct sum of two sparse matrices A and B; both have order 128. Given
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the manageable size, one can use the computer to find the first few powers of A and B,
and then deduce by Lemma 3.3 a good upper bound for λ2,2,2. Using Proposition 4.1, this
yields

ℓ4 ≤ 0.662561,

which is slightly better than the best previously known upper bound of 1/16 log 8! =
0.662788..., due to Minc [8]. (Note that if we exploit the fact that the natural action of
the symmetry group of the cube commutes with A and B, the computation is reduced to
the degree that it can almost be done by hand; see Section 5).

We note that the case a1 = a2 = 2, a3 = 4 is also within reach: choosing G to be the
symmetry group of the 2 × 2 × 4 toroidal brick, the matrix AG has order 1324. The case
d = 5, a1 = a2 = a3 = a4 = 2 reduces to a calculation of smaller size.

Finally, we mention that our method also applies to other dimer enumeration problems
in three (or higher) dimensions that should be of comparable interest, e.g. for toroidal
quotients of the body centered cubic lattice or face centered cubic lattice. Indeed, these
lattices satisfy the three crucial properties required for the ideas in Section 2 to go through:
(1) if g(a, b, c) is the number of dimer coverings of a toroidal quotient of sizes a, b and c
then g is symmetric in a, b, c (2) the dimer coverings can be interpreted as closed walks in
a certain weighted directed graph S and (3) the adjacency matrix of S is symmetric.

5. Concluding remarks

As promised, we argue in this section that the case d = 3, k = 2, l = 4 can be worked
out with minimal (conceivably even no) computer assistance.

The matrix M has in this case order 28, so the direct summands A and B both have
order 128. Figure 5.1 illustrates the vertices of the graph S which give rise to A. Each
such vertex, by definition a 2 by 4 0-1 matrix (with an even number of 1’s), is identified
with a (toroidal) 2 × 4 chessboard whose unit squares corresponding to 1’s in the matrix
are shaded.

Choose G to be the group generated by the shift one unit to the right and by the
reflection in the horizontal and vertical symmetry axes of the board (so G is isomorphic
to C4 × C2 × C2). The action of G on the vertices of A turns out to have the 22 orbits
indicated in Figure 5.1.

By (3.2), the largest eigenvalue of A is the same as the largest eigenvalue of the matrix
AG of order 22 whose (i, j) entry is obtained as follows: choose some element x in the i-th
orbit and add up the weights of the edges of S from x to y, as y runs over the j-th orbit.

This can be done by inspection from Figure 5.1. For example, let us find the (6, 14)
entry of our matrix AG. To this end, let x be the top element of orbit 6. Only the second,
third, sixth and seventh elements of orbit 14 have their shaded squares in positions disjoint
from the positions of the shaded squares of x. Moreover, by superimposing x and any of
these four elements of orbit 14, the unshaded part of the resulting (toroidal) board has
always two distinct dimer coverings. Therefore, AG(6, 14) = 8. Similarly, one obtains
AG(6, 15) = 0 and AG(6, 21) = 4.
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Figure 5.1

Most of the entries of AG turn out to be zero. This makes it very easy to compute its
square, and therefore the trace of its second and fourth powers. The values of these traces
are

t2 = 4462

t4 = 16369814. (5.1)

The matrix B can be handled in a completely analogous way. As in Section 3, it turns
out that the largest eigenvalue of B is strictly less than the largest eigenvalue of A. Thus,
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by (5.1) and Lemma 3.3 one obtains for ℓ3 the upper bounds of 0.52521 (from t2) and
0.519093 (from t4).

We conclude with some comments on the case k = 4, l = 6. This would most likely
improve on the upper bound in Theorem 1.1. However, unless one could find some addi-
tional reductions besides the ones discussed in Section 3, the size of the data one needs to
handle surpasses the limits of today’s computers. Indeed, the matrix A has in this case
order 223, while the largest group G we can choose is the symmetry group of a 4 by 6
toroidal chessboard, which has 96 elements.
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