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Abstract. The even Aztec diamond ADn is known to have precisely four times more
spanning trees than the odd Aztec diamond ODn — this was conjectured by Stanley and
first proved by Knuth. We present a short combinatorial proof of this fact in the case of
odd n. Our proof works also for the more general case of odd by odd Aztec rectangles.

Suppose the corners of a (2m + 1) × (2n + 1) chessboard are black. The graph whose
vertices are the unit squares of the board, and whose edges connect diagonally adjacent unit
squares, has two connected components. The one whose vertices correspond to the white
squares is denoted ADm,n and is called the even Aztec rectangle of order (m, n); the other is
called the odd Aztec rectangle of order (m, n), and is denoted ODm,n (for m = 5 and n = 3
these are illustrated in Figure 1). For m = n the even Aztec rectangle becomes the Aztec
diamond graph, introduced in [4] and the subject of a considerable amount of research.

Stanley conjectured [7] that

(1) t(ADn,n) = 4 t(ODn,n)

for all n ≥ 1, where t(G) denotes the number of spanning trees of the graph G. This was first
proved by Knuth [5] by an algebraic method (finding explicitly the spectrum of the graphs).
A vast generalization of this equality was given by Chow [1], also using an algebraic approach.
We presented a weighted version of (1) in Theorem 5.1 of [3], with a combinatorial proof
based on a certain complementation theorem for subgraphs of the grid graph (see Theorem
2.1 of [3]). The purpose of the present note is to present a short combinatorial proof of
(1) in the case of odd n, as a direct consequence of the factorization theorem of [2] (see
Theorem 1.2 there) and a construction of Temperley (see [8] or [6]) relating spanning trees
and perfect matchings.

The form of the latter that we need can be stated as follows. Let G be an arbitrary graph
obtained from the union of a finite number of 4-cycles of the grid graph 2Z× 2Z. Let G′ be
the graph obtained from G by splitting each of its 2× 2 square faces into four 1× 1 squares,
and regarding the result as a subgraph of the grid Z × Z (Figure 2 illustrates the effect of a
single splitting operation). Temperley’s result (see [8] or [6]) states that for any vertex v of
G on its infinite face, if T(G) := G′ \ v, then

(2) t(G) = M(T(G)),

where M(H) is the number of perfect matchings of the graph H . (Figure 3 shows two
illustrations of this construction. The first corresponds to AD5,3. The second was obtained
from OD5,3 by first removing the four vertices of degree 1, then splitting each face, and
finally removing an appropriate vertex from the infinite face).
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Figure 1. (a) The even Aztec rectangle AD5,3. (b) The odd Aztec rectangle OD5,3.

Figure 2. The operation of splitting a square face into four smaller square faces.

Figure 3. Graphs corresponding by Temperley’s construction to: (a) AD5,3;
(b) the graph obtained from OD5,3 by removing its four vertices of degree 1.

Let G be a connected subgraph of the grid Z
2 symmetric about a diagonal lattice line ℓ.

Assume all the vertices of G on ℓ are consecutive lattice points on ℓ. Scan these vertices from
left to right, and alternate between deleting the edges of G that touch them from above, and
deleting the edges of G that touch them from below (Figure 4 illustrates the result of these
operations for the graphs in Figure 3); let G+ and G− be the connected components of the
resulting graph that are above and below ℓ, respectively. It is easy to see that the number of
vertices of G on ℓ must be even if G admits perfect matchings; let w(G) be half this number.
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Then the Factorization Theorem of [2] implies that

(3) M(G) = 2w(G) M(G+) M(G−).

We are now ready to show how for odd n (1) follows as a direct consequence of (2) and (3).

Theorem 1. For all odd integers m, n ≥ 1 we have t(ADm,n) = 4 t(ODm,n).

Proof. Let T(ADm,n) be the graph obtained by Temperley’s construction from ADm,n by
choosing v to be the rightmost vertex of ADm,n on its southwest-northeast going symmetry
axis (for m = 5 and n = 3 this is shown in Figure 3(a)). Applying (3) to it we obtain

(4) M(T(ADm,n)) = 2m M(G+
1 ) M(G−

1 ),

where G+
1 and G−

1 are obtained from T(ADm,n) as described in the paragraph before (3); for
m = 5, n = 3, they are illustrated in Figure 4(a).

Before we handle the odd diamond ODm,n similarly, it will be convenient to change slightly
its definition, namely by removing its four leaves. This clearly leaves the number of its
spanning trees—and thus the statement of the Theorem—unchanged.

Let T(ODm,n) be the graph obtained by Temperley’s construction from this leafless odd
diamond by choosing v to be its rightmost vertex of on its southwest-northeast going sym-
metry axis (for m = 5 and n = 3 this is pictured in Figure 3(b)). Applying (3) to it we
obtain

(5) M(T(ODm,n)) = 2m−1 M(G+
2 ) M(G−

2 ),

where G+
2 and G−

2 are obtained analogously from T(ODm,n); for m = 5, n = 3, they are
illustrated in Figure 4(b).
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Figure 4. The effect of the Factorization Theorem on the graphs correspond-
ing by Temperley’s construction to: (a) AD5,3; (b) OD5,3.

Note that G−

1 has two vertices of degree 1, and the edges incident to them must be present
in all its perfect matchings. However, the graph obtained from G−

1 by removing the vertices
matched by these two forced edges on the one hand, and G−

2 on the other hand, are readily
seen to be the results of Temperley’s construction applied to isomorphic graphs, with different
choices for the removed vertex v (see Figure 4). Thus, (4) and (5) imply

(6)
M(T(ADm,n))

M(T(ODm,n))
= 2

M(G+
1 )

M(G+
2 )

.
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Furthermore, G+
1 and G+

2 both admit symmetry axes that are diagonal lattice lines (going
northwest-southeast). Apply (3) to each of them (for m = 5, n = 3, this is illustrated in
Figure 5).
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Figure 5. The effect of the Factorization Theorem on: (a) the top part of
Figure 4(a); (b) the top part of Figure 4(a).

We get:

M(G+
1 ) = 2(n+1)/2 M(H1) M(K1)(7)

M(G+
2 ) = 2(n−1)/2 M(H2) M(K2),(8)

where H1 (resp., K1) and H2 (resp., K2) are the resulting subgraphs above (resp., below)
the symmetry axes in G+

1 and G+
2 , respectively. However, one readily sees that the graph

obtained from H1 after removing its one forced edge is isomorphic to H2 (being its rotation
by 180◦), and the graph obtained from K1 after removing its forced edge is isomorphic to K2

(as it is obtained by reflecting across the horizontal the 90◦ rotation of K2). Thus (7) and
(8) imply M(G+

1 ) = 2M(G+
2 ), and hence by (6) we have M(T(ADm,n)) = 4 M(T(ODm,n)).

The statement of the Theorem follows now by (2). �
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