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Abstract. Motivated by the close relationship between the number of perfect matchings

of the Aztec diamond graph introduced in [5] and the free energy of the square-ice model,

we consider a higher dimensional analog of this phenomenon. For d � 1, we construct d-

uniform hypergraphs which generalize the Aztec diamonds and we consider a companion

d-dimensional statistical model (called the 2

d

+ 2-vertex model) whose free energy is given

by the logarithm of the number of perfect matchings of our hypergraphs. We prove that the

limit de�ning the free energy per site of the 2

d

+2-vertex model exists and we obtain bounds

for it. As a consequence, we obtain an especially good asymptotical approximation for the

number of matchings of our hypergraphs.

1. Introduction

In [5] there are introduced the Aztec diamond graphs, which can be de�ned as follows.

Consider a (2n+1)�(2n+1) chessboard with black corners. The graph whose vertices are

the white squares and whose edges connect precisely those pairs of white squares that are

diagonally adjacent is called the Aztec diamond of order n, and is denoted AD

n

(Figure

1.1 illustrates the case n = 5).

A perfect matching of a graph is a collection of vertex-disjoint edges collectively incident

to all vertices. We will often refer to a perfect matching simply as a matching. The number

of matchings of a graph G is denoted by M(G).

The number of perfect matchings of AD

n

is given by the simple formula M(AD

n

) =

2

n(n+1)=2

(see [5] and [2]).

The work in this paper was motivated by the following. Modify the de�nition of the

Aztec diamond by replacing the (2n + 1) � (2n + 1) chessboard by a 2n � 2n toroidal

chessboard. The resulting graph, denoted TD

n

, is called the toroidal Aztec diamond of

order n. What can be said about M(TD

n

)?

As noted for example in [5], this question is closely related to the square-ice model of

statistical mechanics, solved by Lieb [6], [7], [8] and Sutherland [11]. More precisely, the

limit lim

n!1

(1=n

2

) logM(TD

n

) turns out to be the free energy per site of this model, for

a particular choice of Boltzmann weights.



Figure 1.1

Guided by an alternative description of the matchings of the toroidal Aztec diamond,

in Section 2 we construct hypergraphs, denoted TD

n

1

;��� ;n

d

, which may be regarded as

d-dimensional generalizations of TD

n

. The limit

L

d

= lim

n!1

(1=n

d

) logM(TD

n

(d)
) (1.1)

(where n

(d)

stands for d subscripts equal to n and M(H) denotes the number of perfect

matchings of the hypergraphH) turns out to be the free energy of a certain d-dimensional

generalization of the square-ice model, for a suitable choice of Boltzmann weights.

The model arising this way is a vertex model on the Z

d

lattice, with two types of admis-

sible arrow con�guration around a vertex v: balanced con�gurations, in which each pair of

collinear edges incident to v are oriented in the same direction; and special con�gurations,

in which either all edges point towards v or all point away from v. We weight the special

and balanced states by a and b, respectively (a; b � 0). Since the partition function is

a homogeneous function of the weights, we may assume without loss of generality that

b = 1.

For the sake of notational simplicity, in the indexing set of an object O we will often

denote by n

(d)

a sequence of d integers equal to n. Moreover, we will let O

(d)

n

stand for

O

n

(d)
(for example, we write TD

(d)

n

for the hypergraph on the right hand side of (1.1)).

We employ the transfer matrix method (see e.g. [10]) to prove that the limit de�ning

the free energy per site of our d-dimensional model exists (see Theorem 3.5). The main

result of this paper is Theorem 3.10, which gives bounds for the free energy per site. As

a corollary, we obtain that L

d

= ((d � 1)=2) log 2 + "

d

, where 0 < "

d

< 2

�d�(d�3)2

d�2

.

2. Higher dimensional toroidal Aztec diamonds

and the (2

d

+ 2)-vertex model

For the purpose of constructing higher dimensional analogs of the Aztec diamond we

will �nd it convenient to view the matchings of AD

n

as follows. Let G

n

be the subgraph of

the grid Z

2

induced by the vertices having non-negative coordinates not exceeding n. The

union of any two incident edges of G

n

that form a 90

�

angle is called a 2-claw. A partition

of the edges of G

n

into 2-claws is called a 2-claw covering. Clearly, there is a bijection

between 2-claw coverings of G

n

and perfect matchings of the graph whose vertices are the

2



Figure 2.1

midpoints of edges of G

n

, with an edge connecting the midpoints of e and f precisely if

e [ f is a 2-claw. However, this graph is isomorphic to AD

n

(see Figure 2.1).

Therefore, the matchings of AD

n

can be identi�ed with 2-claw coverings of G

n

. This

point of view is useful because it provides the setting for the following very natural gen-

eralization. Let G

(d)

n

be the subgraph of the d-dimensional grid graph Z

d

induced by the

vertices having non-negative coordinates not exceeding n. De�ne a d-claw to be the union

of any d pairwisely orthogonal edges of G

(d)

n

that are incident to a common vertex. The

question then is to determine the number of d-claw coverings of G

(d)

n

.

Just as for d = 2, we can rephrase this as a matching problem as follows. Let AD

(d)

n

be

the uniform d-hypergraph whose vertices are the midpoints of edges of G

(d)

n

, with d vertices

connected by an edge precisely if they are midpoints of edges of G

(d)

n

that form a d-claw.

Then the d-claw coverings of G

(d)

n

can be identi�ed with perfect matchings of AD

(d)

n

(by

a perfect matching of a hypergraph we mean a collection of vertex-disjoint edges that are

collectively incident to all vertices).

The edges of AD

(d)

n

can be visualized as follows. Consider an interior vertex v of G

(d)

n

(i.e., no coordinate of v is 0 or n). The midpoints of the 2d edges incident to v form a

regular (d-dimensional) octahedron O

d

centered at v. Consider translations of O

d

centered

at each vertex of G

(d)

n

(disregard the vertices of these translates whose coordinates do not

all fall in the range [0; n]). Then the edges of AD

(d)

n

are precisely the (d� 1)-dimensional

faces of these octahedra.

In the study of statistical-mechanical models it is customary to consider toroidal bound-

ary conditions, i.e., to identify corresponding vertices on opposite faces of the \crystal".

Let T

(d)

n

and TD

(d)

n

be the graphs obtained by applying this procedure to G

(d)

n

and AD

(d)

n

,

respectively (in particular, TD

(2)

n

is the graph TD

n

de�ned at the beginning of the Intro-

duction). Then the edges of TD

(d)

n

are precisely the (d � 1)-faces of n

d

octahedra that

touch only at vertices, which we will refer to as cells.

The use of the same name as in the case of the \cellular graphs" of [3] is not accidental (a

graph is said to be cellular if its edges can be partitioned into 4-cycles so that at most two

of them meet at a vertex). Indeed, all the results in Section 2 of [3] have correspondents

for cellular d-hypergraphs, i.e., uniform d-hypergraphs whose edges can be partitioned into

cells so that each vertex is contained in at most two cells (see also Section 5 of [2]).

To illustrate this, consider for example TD

(d)

n

. Its cells can be naturally grouped in

\lines," so that each cell is contained in precisely d lines (collect in a line the cells whose

centers have all but one of their coordinates identical). For the case under consideration

each line L is in fact a \cycle," i.e., every cell of L is bordered by two other cells of L.
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Let � be a perfect matching of TD

(d)

n

. Assign one of the numbers 1, 0 or �1 to each cell

of TD

(d)

n

according as the cell contains 2, 1 or 0 edges of � (two is the maximum number

of disjoint (d � 1)-faces in an octahedron of dimension d). Then by an argument similar

to the one used to prove Lemma 2.2 of [3] it can be shown that the obtained pattern A is

\sign-alternating" (i.e., the nonzero elements alternate in sign along each cycle).

Conversely, consider an assignment of 1's, 0's and �1's to the cells of TD

(d)

n

forming

an alternating sign pattern (for short, ASP) A. Let C be the collection of cycles of A

consisting entirely of zeroes. Using the argument in the proof of Lemma 2.3 of [3], we

obtain that, once we �x orientations on the cycles in C, the matchings compatible with

these orientations and having corresponding pattern A are uniquely determined on the

0-cells and can be freely chosen (from 2

d�1

possibilities) on the 1-cells.

Consider now in the same picture the graph T

(d)

n

, with vertices at the centers of the cells

of TD

(d)

n

and edges passing through these cells. If v is the center of a 1-cell (resp., �1-cell)

then orient all edges of T

(d)

n

incident to v so that they point away from (resp., towards) v;

call such arrow con�gurations around a vertex special. Finally, if v is the center of a 0-cell c,

orient the edges of T

(d)

n

along each cycle containing c so that they point away from the 1-cell

and towards the �1-cell bordering the run of zeroes containing c (in case c is contained in a

cycle of zeroes, pick one of the two orientations of the corresponding cycle of T

(d)

n

with all

edges pointing in the same direction along the cycle). This results in an arrow con�guration

around v such that from the two edges incident to v parallel to any coordinate axis one

points towards v and the other away from v; we call such vertex con�gurations balanced

(the four balanced and the two special vertex con�gurations corresponding to d = 2 are

shown in Figure 2.2(a)). Call an orientation of T

(d)

n

admissible if the arrow con�guration

around each vertex is either balanced or special. Then the preceding paragraph shows

that there is a natural correspondence between perfect matchings of TD

(d)

n

and admissible

orientations of T

(d)

n

, with precisely 2

(d�1)N

matchings corresponding to an admissible

orientation having N special vertex con�gurations pointing outward.

This suggests considering the following model, which we will call the (2

d

+ 2)-vertex

model. Consider the set of admissible orientations of T

(d)

n

. Weight the balanced vertex

con�gurations by 1 and the special ones by a � 0. The weight of an admissible orientation

is the product of weights of all vertex con�gurations. The partition function, denoted

Z

(d)

n

(a), is the sum of the weights of all admissible orientations.

Let C be a cycle of T

(d)

n

consisting of n vertices with d�1 of their coordinates identical

and consider an admissible orientation of T

(d)

n

. Then along C, the two special con�gura-

tions occur alternately. Therefore, the two special con�gurations appear the same number

of times in every admissible orientation. This shows that the partition function is not

a�ected by changing the weight of one special con�guration to a

2

and the other to 1. The

above arguments show then that

M(TD

(d)

n

) = Z

(d)

n

(2

(d�1)=2

): (2.1)

For d = 2, the above described model is equivalent to the square-ice (also known as

six-vertex) model. Indeed, reverse arrows on all horizontal segments in each admissible
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Figure 2.2(a)

Figure 2.2(b)

orientation of T

(2)

n

. This amounts to changing the admissible con�gurations around a

vertex to the ones showed in Figure 2.2(b). However, these are precisely the allowed local

arrangements in the square-ice model (see e.g. [1, p.128]).

An important characteristic of a statistical model is the free energy per site, de�ned (up

to a multiplicative constant) to be the limit lim

N!1

(1=N) log Z, where Z is the partition

function and N is the number of \particles" in the system. This limit is expected to exist,

from a physical point of view. We prove (Theorem 3.5) that this limit does indeed exist

for our d-dimensional model. Our method can in fact be applied to prove the existence of

this limit for a large class of statistical models (see Remark 3.6).

3. Bounds for the free energy of the (2

d

+ 2)-vertex model

Let G

n

1

;:::;n

d

be the subgraph of the d-dimensional grid Z

d

induced by the vertices with

coordinates (x

1

; : : : ; x

d

) satisfying 0 � x

i

� n

i

, i = 1; : : : ; d. We will �nd it useful to

enlarge the set of objects under consideration to admissible orientations of the toroidal

grid T

n

1

;:::;n

d

obtained by identifying vertices of G

n

1

;:::;n

d

having equal i-th coordinates

modulo n

i

, i = 1; : : : ; d.

Our derivation of an upper bound for Z

(d)

n

(a) relies on the following ideas. First, we

use the transfer matrix method to encode the admissible orientations of our toroidal grid

T

n

1

;:::;n

d

as closed walks in a certain weighted directed graph S. More precisely, Z

(d)

n

(a)

turns out to be the trace of the n

d

-th power of the adjacency matrix A of S, so it equals

the sum of the n

d

-th powers of its eigenvalues. A simple but crucial observation is that the

matrix A is symmetric, and therefore its eigenvalues are real. The other key observation is

that our problem is invariant under permutations of the d coordinates, so in particular, for

any choice of i 2 f1; : : : ; dg, we could have constructed S such that Z

(d)

n

(a) is the trace of

the n

i

-th power of its adjacency matrix. These two simple facts allow us to prove Lemma

3.2, and then deduce a family of upper bounds for the free energy per site (see inequality

(3.5); an application of bounds analogous to these for the case of the three dimensional

dimer problem is given in [4]).

However, in order for the bounds (3.5) to be e�ective, one needs to be able to determine

(or estimate) the largest eigenvalue of the matrix A (whose entries involve the parameter

a) for some particular (even) values of the n

i

's, and this seems to be very di�cult even for

small values. The way we resolve this is by proving Lemma 3.8, which relates the partition

function in dimension d to the one in dimension d� 1. The statement of Lemma 3.8 was

suggested by Lemma 3.2 and the fact that, when one of the n

i

's is 2, all the information in

the admissible d-dimensional con�gurations is contained in the admissible orientations of

a grid in one dimension lower. Proposition 3.9 and Theorem 3.10 are then deduced easily.
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Let S be the graph consisting of the n

1

n

2

� � �n

d�1

disjoint edges

[(x

1

; : : : ; x

d�1

; 0); (x

1

; : : : ; x

d�1

; 1)];

0 � x

i

< n

i

, i = 1; : : : ; d� 1.

De�ne a weighted directed graphD as follows. Take the vertices of D to be the 2

n

1

���n

d�1

orientations of S. Let � and � be two such orientations. Translate � such that its edges

are the segments [(x

1

; : : : ; x

d�1

;�1); (x

1

; : : : ; x

d�1

; 0)], 0 � x

i

< n

i

, i = 1; : : : ; d � 1. Let

G be the subgraph of T

n

1

;:::;n

d

contained in the hyperplane x

d

= 0 (G is isomorphic to

T

n

1

;:::;n

d�1

). De�ne the weight of the edge from � to � to be the total weight of the

orientations of G which give rise only to admissible (d-dimensional) arrow con�gurations

around the vertices of G (if no such orientation exists the weight is taken to be zero).

We claim that the total weight of the admissible orientations of T

n

1

;:::;n

d

(i.e., the

partition function Z

n

1

;:::;n

d

) is equal to the total weight of the closed walks of length n

d

in

D (if e

1

e

2

� � � e

n

is a closed walk, then e

i

e

i+1

� � � e

n

e

1

� � � e

i�1

is in general a di�erent closed

walk).

Indeed, by considering the hyperplanes H

i

: x

d

= i, i = 0; : : : ; n

d

� 1, any admissible

orientation of T

n

1

;:::;n

d

can be regarded as a closed walk of length n

d

in the above con-

structed graph D. It is clear that the weight of any such given walk C is equal to the total

weight of admissible orientations of T

n

1

;:::;n

d

with con�gurations between the hyperplanes

H

i

speci�ed by the vertices of C.

Pick a linear order on the vertices of D and let A be the transfer matrix, i.e. the

matrix whose (i; j) entry is equal to the weight of the edge from i to j. Let �

n

1

;:::;n

d�1

;l

be the eigenvalues of A (l = 1; : : : ; 2

n

1

���n

d�1

). Then by the Transfer Matrix Theorem

[10,Corollary 4.7.3], we obtain

Z

n

1

;:::;n

d

=

X

l

�

�

n

1

;:::;n

d�1

;l

�

n

d

: (3.1)

Lemma 3.1. The matrix A is symmetric.

Proof. Let i and j be two vertices of D and let G be, as before, the subgraph of T

n

1

;:::;n

d

induced by the vertices with d-th coordinate zero. De�ne M

ij

(resp., M

ji

) to be the set

of admissible orientations of G compatible with the transition from vertex i to vertex j

(resp., vertex j to vertex i).

Given � 2 M

ij

, let �

0

be the orientation of G obtained by reversing all arrows in �.

We claim that �

0

2 M

ji

.

Indeed, let v be a vertex of G. Suppose the oriented segments in i and j are positioned

as in the de�nition of the weight from i to j. Then v is incident to 2d�2 edges of G (which

we leave unoriented for the moment) and to one oriented edge in both i and j. Write (i; j)

to express the fact that i is followed by j. The only instances when the neighborhood of

v is not the same for (i; j) as for (j; i) occur when the corresponding edges of i and j have

opposite orientations: in such cases the edges point towards v for (i; j) if and only if they

point away from v for (j; i).

However, in this case the orientation of G in the neighborhood of v is forced to be the

appropriate special vertex con�guration, and all we have to do to pass from the orientation

determined by (i; j) to the one determined by (j; i) is reverse all arrows in G. Since the
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operation of reversing all arrows in G preserves balanced arrow con�gurations around its

vertices, we obtain our claim.

By interchanging the roles of i and j, we obtain that there is a similar map from M

ji

toM

ij

, and it follows from our construction that the two maps are inverse to one another.

Therefore, the map � 7! �

0

, which is clearly weight-preserving, is a bijection. This implies

that A

ij

= A

ji

. �

Since the entries of A are nonnegative, the Perron-Frobenius theorem (see e.g. [9])

implies that A has an eigenvalue �

n

1

;:::;n

d�1

� 0 greater or equal than the absolute value

of all remaining eigenvalues.

Lemma 3.2. Let n; k � 2 be even. Then for all nonnegative i � d� 2 we have

1

k

i

n

d�i�1

log �

k

(i)

n

(d�i�1)

�

1

n

log 2 +

1

k

i+1

n

d�i�2

log �

k

(i+1)

n

(d�i�2)

(recall that m

(j)

denotes a sequence of j subscripts equal to m).

Proof. By Lemma 3.1, the eigenvalues of A are real. Since k is even, we have by (3.1)

(�

k

(i)

n

(d�i�1)
)

k

�

X

j

(�

k

(i)

n

(d�i�1)

;j

)

k

= Z

k

(i)

n

(d�i�1)

;k

: (3.2)

However, since our model is invariant under permutation of coordinates, we have that

Z

k

(i)

n

(d�i�1)

;k

equals Z

k

(i+1)

n

(d�i�1)
. Using (3.1) and the fact that n is even we obtain

Z

k

(i+1)

n

(d�i�1)

=

X

j

(�

k

(i+1)

n

(d�i�2)

;j

)

n

� 2

k

i+1

n

d�i�2

(�

k

(i+1)

n

(d�i�2)

)

n

: (3.3)

From (3.2) and (3.3) it follows that

(�

k

(i)

n

(d�i�1)

)

k

� 2

k

i+1

n

d�i�2

(�

k

(i+1)

n

(d�i�2)

)

n

:

Taking the logarithm of both sides and dividing by k

i+1

n

d�i�1

we obtain the statement

of the Lemma. �

Corollary 3.3. For n; k even we have

1

n

d�1

log�

(d�1)

n

�

d� 1

n

log 2 +

1

k

d�1

log�

(d�1)

k

: (3.4)

Proof. Apply Lemma 3.2 for i = 0; 1; : : : ; d� 2. We obtain a chain of inequalities that

implies the statement of the Corollary. �

Lemma 3.4. The sequence f(1=(2n)

d�1

) log �

(d�1)

2n

g

n

is convergent.

Proof. Let l and l be the superior and inferior limit of the sequence in the statement of

the Lemma, respectively. By taking the superior limit as n!1 of both sides of (3.4) we

obtain

l �

1

(2k)

d�1

log �

(d�1)

2k

; (3.5)

7



for all k � 1. However, taking the inferior limit of both terms of the above inequality as

k!1 we obtain l � l, which completes the proof. �

Denote by l

d

(a) the limit of the sequence in the statement of Lemma 3.4, where a is

the weight of the two special vertex con�gurations. Recall that Z

(d)

n

(a) is the partition

function when the special con�gurations are weighted by a.

Theorem 3.5.

lim

n!1

1

n

d

logZ

(d)

n

(a) = l

d

(a): (3.6)

Proof. We show �rst that for n � 1 and i = 1; : : : ; d we have

Z

n

(i)

(n+1)

(d�i)

(a) � Z

n

(i�1)

(n+1)

(d�i+1)

(a): (3.7)

Indeed, we can regard the two partition functions as being the generating functions for

closed walks of length n and respectively n+ 1 in a suitable directed graph D. However,

each closed walk C of length n can be augmented to a closed walk C

0

of length n + 1 by

inserting a loop at a vertex, since D has loops at all vertices. Therefore, as the weight of

C

0

is clearly at least as large as the weight of C, we obtain (3.7).

Repeated application of (3.7) implies that Z

(d)

n

(a) � Z

(d)

n+1

(a), for all n � 1. In view of

this, to prove (3.6) it su�ces to show that the even-index terms of the sequence on the

left hand side converge to l

d

(a).

Let therefore n be even. Using (3.1) and the fact that the eigenvalues are real we obtain

(�

(d�1)

n

)

n

� Z

(d)

n

(a) =

X

j

(�

n

(d�1)

;j

)

n

� 2

n

d�1

(�

(d�1)

n

)

n

:

Taking the logarithm and dividing by n

d

we are led to

1

n

d�1

log�

(d�1)

n

�

1

n

d

logZ

(d)

n

(a) �

1

n

log 2 +

1

n

d�1

log�

(d�1)

n

:

Using Lemma 3.4 and letting n!1 we obtain (3.6). �

Remark 3.6. The argument in the above proof can be used to prove the existence of

the corresponding limit for any (d-dimensional) statistical model provided

(i) the set of admissible con�gurations is invariant under permutations of the coordi-

nates

(ii) the admissible con�gurations can be interpreted as closed walks in a weighted

directed graph D

(iii) the incidence matrix of D is symmetric and all diagonal entries are positive.

In particular, using a suitable modi�cation of (iii), we can apply this argument to the

dimer problem on the d-dimensional toroidal grid T

(d)

2n

.

8



Lemma 3.7. Z

n

(a) = (1 + a)

n

+ (1 � a)

n

.

Proof. The graph T

n

is a cycle; all its orientations are admissible and contain the

same number of each type of special con�gurations. The total weight of the orientations

containing exactly 2i special con�gurations is 2

�

n

2i

�

a

2i

. We obtain

Z

n

(a) = 2

X

i

�

n

2i

�

a

2i

= (1 + a)

n

+ (1� a)

n

:

�

The subgraph of T

n

1

;:::;n

d

induced by the vertices that have all but one of their coordi-

nates identical is called a circuit. In case an orientation is given, a circuit is monotone if

all edges point in the same direction along the circuit.

Given an admissible orientation of T

n

1

;:::;n

d

, assign value zero to its balanced vertices

and values 1 and �1 to the special vertices with arrows pointing outward and inward,

respectively. The resulting array, which is said to have shape (n

1

; : : : ; n

d

), is clearly an

alternating sign pattern (i.e., the nonzero entries alternate in sign along each circuit). Let

ASP (n

1

; : : : ; n

d

) be the set of alternating sign patterns of shape (n

1

; : : : ; n

d

). We claim

that given such a pattern A, there are precisely 2

z(A)

admissible orientations giving rise

to A, where z(A) is the number of cycles of A consisting entirely of zeroes (a cycle of A is

the set of entries along a circuit).

Indeed, A determines the orientation along all circuits corresponding to cycles of A

containing nonzero elements. However, circuits corresponding to the remaining cycles of

A must be monotone and can therefore be oriented in two di�erent ways.

The following result is crucial in obtaining an upper bound for l

d

(a).

Lemma 3.8.

Z

2;n

(d�1)

(a) � 2

n

d�1

+(d�1)n

d�2

Z

(d�1)

n

(a

2

=2):

Proof. An alternating sign pattern of shape (2; n

(d�1)

) can be regarded as a pair (A;B),

A;B 2 ASP (n

(d�1)

), where A and B are so that their corresponding entries form 2-cycles

along which the nonzero elements alternate in sign. Since this implies A = �B, we may

in fact identify ASP (2; n

(d�1)

) with ASP (n

(d�1)

). Using the correspondence between

admissible orientations and ASP 's mentioned above we obtain that

Z

2;n

(d�1)

(a) =

X

A2ASP (n

(d�1)

)

2

z(A)

a

N

+

(A)+N

�

(A)

� 2

z(A)

a

N

�

(A)+N

+

(A)

� 2

N

0

(A)

; (3.8)

where N

0

(A) is the number of zeroes in A.

Since z(A) cannot exceed (d � 1)n

d�2

, the total number of cycles of A, and since

N

0

(A) = n

d�1

�N

+

(A) �N

�

(A), we deduce from (3.8) that

Z

2;n

(d�1)
(a) � 2

n

d�1

+(d�1)n

d�2

X

A2ASP (n

(d�1)

)

2

z(A)

(a

2

=2)

N

+

(A)+N

�

(A)

:

Using again the correspondence between admissible orientations and ASP's we identify

the sum on the right hand side as being Z

(d�1)

n

(a

2

=2), thus completing the proof. �

9



Proposition 3.9. l

d

(a) � (1=2) log 2 + (1=2)l

d�1

(a

2

=2):

Proof. Let n be even. By Lemma 3.2 we have that

1

n

d�1

log �

(d�1)

n

�

1

n

log 2 +

1

2n

d�2

log�

2;n

(d�2)

:

Take the superior limit of both sides as n approaches in�nity by even values. By

Theorem 3.5, this gives rise on the left hand side to l

d

(a) and we obtain

l

d

(a) � lim sup

n!1;n even

1

2n

d�2

log �

2;n

(d�2)

� lim sup

n!1;n even

1

2n

d�1

log

X

j

(�

2;n

(d�2)

;j

)

n

= lim sup

n!1;n even

1

2n

d�1

logZ

2;n

(d�1)
(a): (3.9)

By Lemma 3.8 we have

logZ

2;n

(d�1)
(a) � (n

d�1

+ (d� 1)n

d�2

) log 2 + logZ

(d�1)

n

(a

2

=2):

Dividing through by 2n

d�1

, taking the superior limit as n ! 1 (n even) and using

Theorem 3.5 we obtain

lim sup

n!1;n even

1

2n

d�1

logZ

2;n

(d�1)
(a) � (1=2) log 2 + (1=2)l

d�1

(a

2

=2): (3.10)

Relations (3.9) and (3.10) imply the inequality in the statement of the Proposition. �

Theorem 3.10. For a > 0 we have

log a � l

d

(a) � log a+

1

2

d�1

log

 

1 +

1

2

�

2

a

�

2

d�1

!

: (3.11)

Proof. For the �rst inequality, notice that for even n there is an admissible orientation of

T

(d)

n

containing only special vertex con�gurations: just orient all edges so that they point

from vertices of one of the bipartition classes to vertices of the other. Since the weight

of this orientation is a

n

d

, we obtain Z

(d)

n

(a) � a

n

d

, which implies the �rst inequality in

(3.11).

To obtain the second inequality, notice that by applying Proposition 3.9 d� 1 times we

obtain

l

d

(a) �

�

1�

1

2

d�1

�

log 2 +

1

2

d�1

l

1

 

a

2

d�1

2

2

d�1

�1

!

:

However, Lemma 3.7 implies l

1

(b) = log(1 + b) for all b > 0 and hence we obtain from

the above inequality that

10



l

d

(a) �

�

1�

1

2

d�1

�

log 2 +

1

2

d�1

log

�

1 + 2

�

a

2

�

2

d�1

�

=

�

1�

1

2

d�1

�

log 2 +

1

2

d�1

log 2

�

a

2

�

2

d�1

 

1 +

1

2

�

2

a

�

2

d�1

!

= log a +

1

2

d�1

log

 

1 +

1

2

�

2

a

�

2

d�1

!

:

�

Corollary 3.11. For a � 2 we have lim

d!1

l

d

(a) = log a. In other words, the orienta-

tion consisting entirely of special vertex con�gurations dominates as d!1.

We now return to the problem which motivated the consideration of our d-dimensional

model, the study of the number of matchings of the hypergraphs TD

(d)

n

de�ned in Section 2.

By (2.1) and Theorem 3.5, the sequence f(1=n

d

) logM(TD

(d)

n

)g

n

is convergent. Let L

d

be its limit.

Theorem 3.12.

jL

d

�

d� 1

2

log 2j �

1

2

d+(d�3)2

d�2

: (3.12)

Proof. By (2.1) we obtain that L

d

= l

d

(2

(d�1)=2

). Apply Theorem 3.10 and use the

inequality log(1 + x) < x, for x > 0. �

Remark 3.13. The error term in (3.12) decreases very fast as d grows. For d = 6 it is

already less than 10

�15

.

Remark 3.14. Let Z

0

n

(d)

(a) be the generating function for ASP (n

(d)

), with pattern A

weighted by a

N

+

(A)+N

�

(A)

. In the correspondence between admissible orientations of T

(d)

n

and ASP (n

(d)

), the number of admissible orientations having the same ASP is at most 2

to the number of circuits of T

(d)

n

, i.e., 2

dn

d�1

. When taking the logarithm and dividing by

n

d

, the contribution of this multiplicative factor approaches zero as n!1. Therefore,

lim

n!1

(1=n

d

) logZ

0

n

(d)

(a) = l

d

(a): (3.13)

It is therefore natural to ask whether the set of alternating sign patterns of shape

(n

1

; : : : ; n

d

) satis�es conditions (i){(iii) from Remark 3.6. For, if this was the case, one

could use the arguments above to obtain the statement of Corollary 3.11 for all a � 1.

However, one can show that this is not the case. Indeed, suppose the alternating sign

patterns under consideration did satisfy conditions (i){(iii) from Remark 3.6. Then all

arguments used in this section would go through, and the analogs of Lemma 3.2 and

Theorem 3.5 would imply (by taking a = 1)

lim

n!1

1

2

d�2

n

2

log jASP (2

(d�2)

; n

(2)

)j � lim

n!1

1

2

d�1

n

log jASP (2

(d�1)

; n)j:

11



Since ASP (2

(k)

; n

(l)

) can be identi�ed with ASP (n

(l)

) for all k; l � 1, the above in-

equality implies

lim

n!1

1

n

2

log jASP (n

(2)

)j �

1

2

lim

n!1

1

n

log jASP (n)j:

By (3.13), the limits in the above inequality are equal to l

2

(1) and l

1

(1), respectively.

Then by Lemma 3.7, the right hand side equals (1=2) log 2 = 0:34:::. On the other hand,

by [6] the left hand side equals (3=2) log(4=3) = 0:43:::, a contradiction.
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