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Abstrat. We evaluate the determinant det

1�i;j�n

�

�

x+y+j

x�i+2j

�

�

�

x+y+j

x+i+2j

�

�

, whih gives the

number of lozenge tilings of a hexagon with ut o� orners. A partiularly interesting feature

of this evaluation is that it requires the proof of a ertain hypergeometri identity whih we

aomplish by using Gosper's algorithm in a non-automati fashion.

The purpose of this paper is to provide a diret evaluation of the determinant

det

1�i;j�n

��

x+ y + j

x � i + 2j

�

�

�

x+ y + j

x+ i+ 2j

��

: (1)

This determinant arises in our study [4℄ on the enumeration of lozenge tilings of hexagons

with ut o� orners. For example, onsider a hexagon with side lengths x + n, n, y, x+ n,

n, y (in yli order) and angles of 120

Æ

of whih two adjaent orners are ut o� as in

Figure 1(a).

1

Figure 1(b) shows a lozenge tiling of this region, by whih we mean a tiling
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1

To be preise, from the top-left orner we ut o� a (reversed) stairase of the form (y � 1; y � 2; : : : ; 1),

meaning that the ut-o� stairase onsists of y � 1 rhombi in the �rst row, y � 2 rhombi in the seond row,

et., and from the top-right orner we ut o� a stairase of the form (n � 1; n� 2; : : : ; 1).
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2 M. CIUCU AND C. KRATTENTHALER

by unit rhombi with angles of 60

Æ

and 120

Æ

, referred to as lozenges. The number of these

lozenge tilings is given by the determinant (1). This is seen by onverting the lozenge tilings

into families (P

1

; P

2

; : : : ; P

n

) of noninterseting lattie paths onsisting of positive unit steps,

where the path P

i

runs from (i;�i) to (x + 2i; y � i), i = 1; 2; : : : ; n and does not ross the

diagonal y = x � 1 (see Figure 2), and then applying the main theorem of noninterseting

lattie paths [18, Lemma 1℄, [8℄, [23, Theorem 1.2℄ (see [4℄ for details and bakground; there

is also another ase in [4℄ in whih the determinant (1) provides the solution).
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(a) A hexagon with ut o� orners.

(b) A lozenge tiling of the hexagon with ut o� orners.

Figure 1

By Theorem 1 below, the number of the lozenge tilings of the preeding paragraph is
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(a) The path family orresponding to a lozenge tiling.
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(b) The paths made orthogonal.

Figure 2

given by a losed form expression. The proof of Theorem 1 that we present in this paper

2

is

primarily based on hypergeometri series identities. A remarkable aspet is that it ontains

an instane of a non-automati appliation of Gosper's algorithm [9℄ (see also [10, x5.7℄, [20,

xII.5℄), see Step 3 of the proof of Theorem 1. This is noteworthy, beause Gosper invented

his algorithm to automate summation, so that a non-automati appliation must be almost

onsidered as a misuse. But learly (and more seriously), the fat that Gosper's algorithm

is also useful in \omputer-free territory" only adds to its value. (The only other instane

2

An alternative proof is presented in [4℄, in whih a ombinatorial argument is used to onvert the

determinant (1) into a di�erent determinant that was already known from [12, Theorem 10℄.
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of a non-automati appliation of Gosper's algorithm that we are aware of appears in [19℄.

However, the purpose of use there is di�erent. Roughly speaking, we use it to prove a positive

result, namely to verify the truth of an identity between ertain hypergeometri series, see

(14). In ontrast, Petkov�sek and Wilf use it to prove a negative result, namely that a ertain

binomial sum annot be expressed in terms of losed form expressions.)

Theorem 1. Let n be a positive integer, and let x and y be nonnegative integers. Then the

following determinant evaluation holds:

det

1�i;j�n

��

x+ y + j

x� i + 2j

�

�

�

x+ y + j

x+ i+ 2j

��

=

n

Y

j=1

(j � 1)! (x + y + 2j)! (x � y + 2j + 1)

j

(x + 2y + 3j + 1)

n�j

(x+ n+ 2j)! (y + n� j)!

; (2)

where the shifted fatorial (a)

k

is de�ned by (a)

k

:= a(a + 1) � � � (a + k � 1), k � 1, and

(a)

0

:= 1.

Remark. We formulate Theorem 1 only for integral x and y. But in fat, with a generalized

de�nition of fatorials and binomials (f. [10, x5.5, (5.96), (5.100)℄, Theorem 1 would also

make sense and be true for omplex x and y.

Proof. We prove the determinant evaluation by \identi�ation of fators," a method that is

also applied suessfully in [2℄, [3℄, [5℄, [6℄, [7℄, [11℄, [12℄, [13℄, [14℄, [16℄, [17℄ and [21℄ (see in

partiular the tutorial desription in [15, x2.4℄ or [13, x2℄).

First of all, we take appropriate fators out of the determinant. To be preise, we take

(x + y + j)!=

�

(x + n+ 2j)! (y + n� j)!

�

out of the j-th olumn of the determinant in (2),

j = 1; 2; : : : ; n. Thus we obtain

n

Y

i=1

(x + y + j)!

(x + n+ 2j)! (y + n� j)!

� det

1�i;j�n

((x + 2j � i+ 1)

n+i

(y + i� j + 1)

n�i

� (x + 2j + i+ 1)

n�i

(y � i� j + 1)

n+i

)

(3)

for the determinant in (2). Let us denote the determinant in (3) by D

n

(x; y). Comparison

of (2) and (3) yields that (2) will be proved one we are able to establish the determinant

evaluation

D

n

(x; y)

= det

1�i;j�n

((x + 2j � i+ 1)

n+i

(y + i� j + 1)

n�i

� (x+ 2j + i + 1)

n�i

(y � i� j + 1)

n+i

)

=

n

Y

j=1

(j � 1)! (x + y + j + 1)

j

(x� y + 2j + 1)

j

(x + 2y + 3j + 1)

n�j

: (4)

For the proof of (4) we proeed in several steps. An outline is as follows. In the �rst step

we show that

Q

n

j=1

(x � y + 2j + 1)

j

is a fator of D

n

(x; y) as a polynomial in x and y. In
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the seond step we show that

Q

n

j=1

(x+ y + j + 1)

j

is a fator of D

n

(x; y), and in the third

step we show that

Q

n

j=1

(x + 2y + 3j + 1)

n�j

is a fator of D

n

(x; y). Then, in the fourth

step we determine the maximal degree of D

n

(x; y) as a polynomial in x, and the maximal

degree as a polynomial in y, whih turns out to be n(3n+ 1)=2 in both ases. On the other

hand, the degree in x, and also in y, of the produt on the right hand side of (4), whih

by the �rst three steps divides D

n

(x; y), is exatly n(3n+ 1)=2. Therefore we are fored to

onlude that

D

n

(x; y) = C(n)

n

Y

j=1

(x� y + 2j + 1)

j

(x + y + j + 1)

j

(x + 2y + 3j + 1)

n�j

; (5)

where C(n) is a onstant independent of x and y. Finally, in the �fth step, we determine

the onstant C(n), whih turns out to equal

Q

n

j=1

(j � 1)!. Clearly, this would �nish the

proof of (4), and thus of (2), as we already noted.

Step 1.

Q

n

j=1

(x � y + 2j + 1)

j

is a fator of D

n

(x; y). Let us onentrate on a typial

fator (x � y + 2j + l), 1 � j � n, 1 � l � j. We laim that for eah suh fator there is

a linear ombination of the olumns that vanishes if the fator vanishes. More preisely, we

laim that for any j; l with 1 � j � n, 1 � l � j there holds

b

j+l

2



X

s=l

(j � l)

(j � s)

(j + l � 2s+ 1)

s�l

(s � l)!

(x+ 2j + l + n� s+ 1)

s�l

(x + n+ 2s + 1)

j+l�2s

(2x + 2j + l + s+ 1)

j�s

� (olumn s of D

n

(x; x + 2j + l))

+ (olumn j of D

n

(x; x + 2j + l)) = 0: (6)

To avoid onfusion, for j = l it is understood by onvention that the sum in (6) vanishes.

In order to verify (6), we have to hek

b

j+l

2



X

s=l

(j � l)

(j � s)

(j + l � 2s+ 1)

s�l

(s � l)!

(x+ 2j + l + n� s+ 1)

s�l

(x + n+ 2s + 1)

j+l�2s

(2x + 2j + l + s+ 1)

j�s

�

�

(x + i+ 2j + l � s+ 1)

n�i

(x � i+ 2s+ 1)

n+i

� (x � i+ 2j + l � s+ 1)

n+i

(x + i+ 2s+ 1)

n�i

�

+ (x � i+ 2j + 1)

n+i

(x + i+ j + l + 1)

n�i

� (x + i + 2j + 1)

n�i

(x� i+ j + l+ 1)

n+i

= 0; (7)

whih is (6) restrited to the i-th row. The exeptional ase j = l an be treated immediately.

By assumption, the sum in (7) vanishes for j = l, and, by inspetion, also the other two

expressions in (7) vanish for j = l. So it remains to establish (7) for j > l. In terms of the

standard hypergeometri notation

r

F

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; z

�

=

1

X

k=0

(a

1

)

k

� � � (a

r

)

k

k! (b

1

)

k

� � � (b

s

)

k

z

k

;
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this means to hek

(x + i+ 2j + 1)

n�i

(x � i + 2l + 1)

n+i+j�l

(2x + 2j + 2l + 1)

j�l

�

4

F

3

�

�j

2

+

l

2

;

1

2

�

j

2

+

l

2

;�i� 2j � x; 1 + 2j + 2l+ 2x

1� j + l;

1

2

�

i

2

+ l+

x

2

; 1�

i

2

+ l +

x

2

; 1

�

�

(x � i+ 2j + 1)

n+i

(x + i+ 2l + 1)

�i+j�l+n

(2x+ 2j + 2l + 1)

j�l

�

4

F

3

�

�j

2

+

l

2

;

1

2

�

j

2

+

l

2

; i � 2j � x; 1 + 2j + 2l + 2x

1� j + l;

1

2

+

i

2

+ l+

x

2

; 1 +

i

2

+ l +

x

2

; 1

�

+ (x � i+ 2j + 1)

n+i

(x + i+ j + l + 1)

n�i

� (x + i+ 2j + 1)

n�i

(x � i+ j + l + 1)

n+i

= 0: (8)

Both

4

F

3

-series an be summed by means of a

4

F

3

-summation whih appears in a paper by

Andrews and Burge [1, Lemma 1℄ (see [12, Lemma A3℄ for a simpler proof),

4

F

3

�

�

N

2

;

1

2

�

N

2

;�a; a + b

1�N;

b

2

;

1

2

+

b

2

; 1

�

=

(a + b)

N

(b)

N

+

(�a)

N

(b)

N

;

where N is a positive integer. We have to apply the ase where N = j � l. This is indeed a

positive integer beause of our assumption j > l. Some simpli�ation then leads to (8).

This shows that

Q

n

j=1

(x � y + 2j + 1)

j

divides D

n

(x; y).

Step 2.

Q

n

j=1

(x + y + j + 1)

j

is a fator of D

n

(x; y). Let us onentrate on a typial

fator (x + y + j + l), 1 � j � n, 1 � l � j. We laim that for eah suh fator there is a

linear ombination of the olumns that vanishes if the fator vanishes. More preisely, we

laim that for any j; l with 1 � j � n, 1 � l � j there holds

j

X

s=1+j�l

�

�

1

4

�

j�s

�

l � 1

s+ l � j � 1

�

�

(x + n+ 2s + 1)

2j�2s

(2x+ 3j + l + s + 1)

j�s

(x + j + s +

1

2

)

j�s

(x + j + l + s)

j�s

(x + j + l � n+ s)

j�s

� (olumn s of D

n

(x;�x � j � l)) = 0: (9)

In order to verify (9), we have to hek

j

X

s=1+j�l

�

�

1

4

�

j�s

�

l � 1

s+ l � j � 1

�

�

(x + n+ 2s + 1)

2j�2s

(2x+ 3j + l + s + 1)

j�s

(x + j + s +

1

2

)

j�s

(x + j + l + s)

j�s

(x + j + l � n+ s)

j�s

�

�

(�x+ i� j � l � s + 1)

n�i

(x � i+ 2s+ 1)

n+i

� (�x� i � j � l � s + 1)

n+i

(x + i+ 2s+ 1)

n�i

�

= 0;
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whih is (9) restrited to the i-th row. Equivalently, using hypergeometri notation, this

means to hek

(�1)

l

(�i � 2j � x)

n+i

(3 + i+ 2j � 2l + x)

�2�i+2l+n

(2 + 4j + 2x)

l�1

4

l�1

(1 + 2j + x)

l�1

(

3

2

+ 2j � l + x)

l�1

(1 + 2j � n+ x)

l�1

�

4

F

3

�

1� l;

3

2

+ 2j � l + x; 1 + 2j + x; 1 + i+ 2j + x

2 + 4j + 2x; 2 +

i

2

+ j � l +

x

2

;

3

2

+

i

2

+ j � l +

x

2

; 1

�

� (�1)

l

(i� 2j � x)

n�i

(3� i+ 2j � 2l + x)

�2+i+2l+n

(2 + 4j + 2x)

l�1

4

l�1

(1 + 2j + x)

l�1

(

3

2

+ 2j � l + x)

l�1

(1 + 2j � n+ x)

l�1

�

4

F

3

�

3

2

+ 2j � l + x; 1 + 2j + x; 1 � i+ 2j + x; 1 � l

3

2

�

i

2

+ j � l +

x

2

; 2 �

i

2

+ j � l +

x

2

; 2 + 4j + 2x

; 1

�

= 0: (10)

In order to establish (10) we apply Bailey's transformation for balaned

4

F

3

-series (see [22,

(4.3.5.1)℄),

4

F

3

�

a; b; ;�N

e; f; 1 + a + b+ � e � f �N

; 1

�

=

(e � a)

N

(f � a)

N

(e)

N

(f)

N

4

F

3

�

�N; a; 1 + a + � e� f �N; 1 + a + b � e� f �N

1 + a + b + � e� f �N; 1 + a � e�N; 1 + a � f �N

; 1

�

;

where N is a nonnegative integer, to the seond

4

F

3

-series in (10). Thus it is onverted into

the �rst

4

F

3

-series, and it is routine to hek that also the remaining terms that go with

the

4

F

3

-series agree. So, the two terms on the left hand side of (10) anel eah other, as

desired.

This establishes that

Q

n

j=1

(x + y + j + 1)

j

divides D

n

(x; y).

Step 3.

Q

n

i=1

(x + 2y + 3i+ 1)

n�i

is a fator of D

n

(x; y). This is the most diÆult part

of the proof of (4). Trials of �nding linear ombinations of olumns that vanish resulted in

extremely messy expressions. So, we deided to work with linear ombinations of rows this

time. Still, the oeÆients are not as \nie" as in Steps 1 and 2.

Let us onentrate on a typial fator (x+2y+3i+ l), 1 � i � n, 1 � l � n� i. We laim

that for eah suh fator there is a linear ombination of the rows that vanishes if the fator

vanishes. More preisely, we laim that for any i; l with 1 � i � n, 1 � l � n� i there holds

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l � k) � (row k of D

n

(�2y � 3i� l; y)) = 0; (11)

where P

l

(e; f) is the polynomial

P

l

(e; f) =

2l+1

X

r=0

a

r

(e)

r

(�f)

2l+1�r

; (12)

with the expansion oeÆients a

r

given by

a

r

= hx

r

i

�

(x

2

+ x + 1)

l�1

(2x + 1)(x + 2)(x � 1)

�

: (13)
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Here, hx

r

ig(x) denotes the oeÆient of x

r

in g(x).

By speializing (11) to the j-th olumn, splitting the resulting sum into two parts in the

obvious way, and then moving one sum to the right hand side, we see that in order to verify

(11), we have to hek

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i+ l� k) (�2y � 3i� l+ 2j � k + 1)

n+k

(y + k� j + 1)

n�k

=

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l�k) (�2y�3i� l+2j+k+1)

n�k

(y�k� j+1)

n+k

;

or, after adding one more term as �rst summand on both sides, equivalently,

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i+ l� k) (�2y � 3i� l+ 2j � k + 1)

n+k

(y + k� j + 1)

n�k

=

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j + k+1)

n�k

(y� k� j +1)

n+k

:

(14)

Empirially, we disovered that apparently both sums in (14) are inde�nitely summable

(\Gosper-summable"; see [10, x5.7℄, [20, xII.5℄). It is exatly this fat whih makes (14)

tratable.

In the following we will show that the sums in (14) are equal, however, without exhibiting

an expliit expression for the sums. Instead, what we will do is to read through Gosper's

algorithm [9℄ (see also [10, x5.7℄, [20, xII.5℄), whih is an algorithm that solves the problem of

inde�nite summation for hypergeometri sums. (For any �xed l, our sums in (14) belong to

the ategory of hypergeometri sums.) In the ourse of reading through Gosper's algorithm

it will emerge that the sums on both sides of (14) must be equal.

Let us reall what Gosper's algorithm does and how it works. Let t(k) be a \hyperge-

ometri term", i.e., be a term suh that the ratio t(k + 1)=t(k) is a rational funtion in k.

Then the Gosper algorithm will �nd a hypergeometri term T (k) (if it exists) satisfying

t(k) = T (k + 1)� T (k): (15)

The upshot of this is that then the inde�nite summation of the term t(k) an be easily

arried out,

B

X

k=A

t(k) = T (B + 1)� T (A): (16)

The term T (k) is found in the following way. First, one �nds polynomials p(k), q(k), and

r(k) suh that

t(k + 1)

t(k)

=

p(k + 1)

p(k)

q(k)

r(k + 1)

; (17)
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where q(k) and r(k) have the property that whenever (k + �) j q(k) and (k + �) j r(k)

then the di�erene �� � must not be a positive integer. Next, one �nds a polynomial s(k)

satisfying the reurrene relation

p(k) = q(k)s(k + 1) � r(k)s(k) (18)

for all k. The term T (k) is then given by

T (k) =

r(k) s(k)

p(k)

t(k): (20)

Now let us arry out this program with the summands in (14). First, let t(k) = t

1

(k),

where t

1

(k) is the summand of the sum on the left hand side of (14),

t

1

(k) =

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j� k+1)

n+k

(y+ k� j+1)

n�k

:

Then (17) holds with p(k) = p

1

(k), q(k) = q

1

(k), r(k) = r

1

(k), where p

1

(k) = P

l

(2i; i+l�k),

q

1

(k) = (i + l � k)(�2y � 3i � l + 2j � k), and r

1

(k) = (i + l + k)(y � j + k). So, next we

have to �nd a polynomial s

1

(k) satisfying the reurrene

P

l

(2i; i+ l�k) = (i+ l�k)(�2y�3i� l+2j�k)s

1

(k+1)� (i+ l+k)(y� j+k)s

1

(k): (21)

For eah spei� instane of i and l this is just routine. However, we were not able to �nd an

expliit formula for s

1

(k) in general. Fortunately, we do not need suh an expliit expression.

Assuming that we have found a polynomial s

1

(k) satisfying (21), by (16) and (20) we have

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j � k + 1)

n+k

(y + k � j + 1)

n�k

=

r

1

(i + l + 1) s

1

(i+ l + 1)

p

1

(i + l + 1)

t

1

(i+ l + 1)�

r

1

(0) s

1

(0)

p

1

(0)

t

1

(0)

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j + 1)

n

(y � j)

n+1

s

1

(0); (22)

the last line being due to the fat that t

1

(i+ l + 1) = 0.

On the other hand, for t(k) = t

2

(k), where t

2

(k) is the summand of the sum on the right

hand side of (14),

t

2

(k) =

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j+ k+1)

n�k

(y� k� j+1)

n+k

we may hoose p(k) = p

2

(k), q(k) = q

2

(k), r(k) = r

2

(k), where p

2

(k) = P

l

(2i; i + l � k),

q

2

(k) = (i + l � k)(y � j � k), and r

2

(k) = (i + l + k)(�2y � 3i � l + 2j + k). So, here we

have to �nd a polynomial s

2

(k) satisfying the reurrene

P

l

(2i; i+ l�k) = (i+ l�k)(y� j�k)s

2

(k+1)� (i+ l+k)(�2y�3i� l+2j+k)s

2

(k): (23)
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Again, this is just routine for eah spei� instane of i and l, but we do not know an expliit

formula for s

2

(k) in general. Assuming that we have found a polynomial s

2

(k) satisfying

(23), by (16) and (20) we have

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j + k + 1)

n�k

(y � k � j + 1)

n+k

=

r

2

(i + l + 1) s

2

(i+ l + 1)

p

2

(i + l + 1)

t

2

(i+ l + 1)�

r

2

(0) s

2

(0)

p

2

(0)

t

2

(0)

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j)

n+1

(y � j + 1)

n

s

2

(0); (24)

the last line being due to the fat that also t

2

(i+ l + 1) = 0.

In order to relate s

2

(k) to s

1

(k), we make the following observation: We set s

2

(k) =

~s

2

(�k+1), substitute this in the reurrene (23), then replae k by �k and hange the sign

on both sides of (23). Thus we obtain for ~s

2

(k) the reurrene

�P

l

(2i; i+ l+k) = (i+ l�k)(�2y�3i� l+2j�k)~s

2

(k+1)�(i+ l+k)(y�j+k)~s

2

(k): (25)

This is almost the same reurrene as the reurrene (21) for s

1

(k)! It is only the term on

the left hand side whih is di�erent! But, in fat, there is no di�erene: We laim that:

Claim 1: We have P

l

(e; e + 2l � f) = �P

l

(e; f).

Claim 2: There exists a unique solution for the reurrene (21).

Let us for the moment assume that these laims have been already established. Then,

beause of Claim 1, the reurrenes (21) and (25) are indeed the same. Furthermore, thanks

to Claim 2, there does exist a unique solution for the reurrene (21), and so also for (25).

Hene, the solutions must be the same, i.e., s

1

(k) = ~s

2

(k), whih means s

1

(k) = s

2

(1� k).

In partiular, we have s

1

(1) = s

2

(0). A further fat, whih follows immediately from Claim 1

on replaing e by 2e and setting f = e + l, is that P

l

(2e; e + l) = 0. Therefore, by setting

k = 0 in (21), we obtain

0 = (i + l)(�2y � 3i� l + 2j)s

1

(1) � (i + l)(y � j)s

1

(0):

From this equation, and the previous observation that s

1

(1) = s

2

(0), we infer

s

1

(0) =

(�2y � 3i� l + 2j)

(y � j)

s

1

(1) =

(�2y � 3i � l + 2j)

(y � j)

s

2

(0):

Substitution of this relation in (22) gives

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j � k + 1)

n+k

(y + k � j + 1)

n�k

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j)

n+1

(y � j + 1)

n

s

2

(0):
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Comparison of this identity with (24) shows that indeed the sums on both sides of (14) are

idential. This would prove (14).

So it remains to settle Claims 1 and 2.

We begin with Claim 1. By the de�nition (12) of P

l

(e; f), we have

P

l

(e; e + 2l � f) =

2l+1

X

r=0

a

r

(e)

r

(�e� 2l + f)

2l+1�r

=

2l+1

X

r=0

a

r

(e)

r

(�1)

r+1

(e+ r � f)

2l+1�r

;

where the oeÆients a

r

are given by (13). Next we use the Chu{Vandermonde summation

(see e.g. [10, x5.1, (5.27)℄) in the form

N

X

s=0

�

N

s

�

(x)

s

(y)

N�s

= (x + y)

N

;

with N = 2l + 1� r, x = e+ r, and y = �f . Thus,

P

l

(e; e + 2l � f) =

2l+1

X

r=0

a

r

(e)

r

(�1)

r+1

2l+1�r

X

s=0

�

2l + 1� r

s

�

(e + r)

s

(�f)

2l+1�r�s

= �

2l+1

X

m=0

(e)

m

(�f)

2l+1�m

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

:

Therefore, Claim 1 will follow immediately, if we are able to show that

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

= a

m

: (26)

This an be readily done by using generating funtions. The de�nition (13) of the oeÆients

a

r

is equivalent to

1

X

r=0

a

r

x

r

= (x

2

+ x+ 1)

l�1

(2x+ 1)(x + 2)(x � 1): (27)

Let us denote the right hand side of this equation by A(x). Now we multiply both sides of

(26) by x

m

, and we sum over all m = 0; 1; : : : We obtain

1

X

m=0

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

= A(x);

and after interhanging summations on the left hand side and summing the (now) inner sum

over m by means of the binomial theorem,

(1 + x)

2l+1

A

�

�

x

1 + x

�

= A(x):



12 M. CIUCU AND C. KRATTENTHALER

It is trivial to verify this equation. Thus also the equivalent equation (26) must be true.

Due to the preeding onsiderations, this ompletes the proof of Claim 1.

Next we turn to Claim 2. We show that there is a unique polynomial s

1

(k) of degree 2l

that satis�es the reurrene (21). (We leave it as an exerise that the \degree alulus" of

the Gosper algorithm shows that if there is a solution to the reurrene (21) then it has to

be a polynomial of degree at most 2l.) So, let s

1

(k) =

P

2l

m=0

(m)(k�i� l)

m

. We substitute

this into (21), then expand everything with respet to the basis (k � i � l)

m

, m = 0; 1; : : :

(for the spae of polynomials in k), and �nally ompare oeÆients of (k � i� l)

m

on both

sides of (21). This leads to the following system of equations for the oeÆients (m):

a

2l+1�m

(2i)

2l+1�m

= (y+ i� l� j+m�1) (m�1)� (2i+2l�m)(y+ i+ l� j�m) (m);

m = 0; 1; : : : ; 2l + 1; (28)

where, by onvention, we put (�1) = (2l + 1) = 0. For onveniene, we set

(m) = (2i)

2l�m

(y + i� l � j)

2l�m

(y + i� l � j)

m

~(m):

By substituting this in (28), we obtain the simpler system of equations

a

m

(y + i� l � j)

2l�m+1

(y + i� l� j)

m

= ~(m� 1)� ~(m); m = 0; 1; : : : ; 2l + 1: (29)

This is a system of 2l + 2 equations for 2l + 1 variables. (Reall the onvention (�1) =

(2l + 1) = 0, whih of ourse implies ~(�1) = ~(2l + 1) = 0.) So, it is overdetermined. It

is easy to see that this inhomogeneous system of linear equations has a (unique) solution if

and only if the sum of the left hand sides of (29) over all m equals 0, i.e., if and only if

2l+1

X

m=0

a

m

(y + i� l � j)

2l�m+1

(y + i � l � j)

m

= 0: (20)

This would follow immediately from the antisymmetry property a

m

= �a

2l+1�m

, beause

then the m-th and (2l + 1 �m)-th summand in the sum in (20) would anel eah other.

Indeed, the substitution x ! 1=x in (27) yields a

m

= �a

2l+1�m

. Therefore, the system of

equations (28) has indeed a unique solution, whih implies that there is a unique polynomial

s

1

(k) satisfying the reurrene (21), whih is exatly the assertion of Claim 2.

The proof that

Q

n

i=1

(x + 2y + 3i+ 1)

n�i

divides D

n

(x; y) is now omplete.

Step 4. D

n

(x; y) is a polynomial in x of maximal degree n(3n+1)=2, and the same is true

for the maximal degree of D

n

(x; y) in y. This is beause eah term in the de�ning expansion

of the determinant D

n

(x; y) has degree n(3n+1)=2 in x, and the same in y. Sine the right

hand side of (4), whih by Steps 1{3 divides D

n

(x; y) as a polynomial in x and y, also has

degree n(3n + 1)=2 in x, respetively y, D

n

(x; y) and the right hand side of (4) di�er only

by a multipliative onstant.

Step 5. The evaluation of the multipliative onstant. By the preeding steps we know

that (5) holds. In partiular, if we set y = 0, we have

det

1�i;j�n

((x + 2j � i+ 1)

n+i

(i � j + 1)

n�i

) = C(n)

n

Y

j=1

(x + j + 1)

n+j

: (31)
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(The reader should be aware that the seond term in the determinant D

n

(x; y), as given

by (4), vanishes for y = 0 beause of the presene of the fator (y � i � j + 1)

n+i

.) The

determinant on the left hand side of (31) is a lower triangular matrix, hene it equals the

produt of its diagonal entries, whih is

Q

n

j=1

(x+j+1)

n+j

(n�j)!. Therefore C(n) is equal

to

Q

n

j=1

(n � j)! =

Q

n

j=1

(j � 1)!.

This �nishes the proof of (4) and thus of the Theorem. �

Aknowledgement. We are grateful to the referee for a simpli�ation of our original proof of

(26).
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