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Abstract. We present a combinatorial solution to the problem of determining the number

of lozenge tilings of a hexagon with sides a, b + 1, b, a + 1, b, b + 1, with the central unit

triangle removed. For a = b, this settles an open problem posed by Propp [7].

Let a, b, c be positive integers, and denote by H the hexagon whose side-lengths are (in

cyclic order) a, b, c, a, b, c and all whose angles have 120 degrees. The lozenge tilings (i.e.,

tilings by unit rhombi) of H can be regarded as plane partitions contained in an a� b� c

box (cf. [2]), and therefore their number is given by the simple product formula [5]
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i+ j + k � 1

i+ j + k � 2

: (1)

Motivated by this, Propp [7] considered the problem of enumerating the lozenge tilings

of a hexagon whose sides are alternately a and a+ 1, from which the central unit triangle

has been removed (removal of a suitable unit triangle is necessary for the remaining region

to have lozenge tilings). Based on numerical evidence, he conjectured that there exists a

simple product formula for the number of tilings of these regions.

The more general question of �nding the number of lozenge tilings of a hexagon with

sides a, b+1, c, a+1, b, c+1, with the central unit triangle removed { denote it by N (a; b; c)

{ appeared in work of Kuperberg [4] concerning certain weighted enumerations of plane

partitions. This general question has been recently settled by Okada and Krattenthaler

[6], who proved that N (a; b; c) is equal to the product of four factors of type (1) (their proof

relies on a new Schur function identity they prove using the minor summation formula of

Ishikawa and Wakayama [3]).

The purpose of this paper is to give a simple product formula (with a simple combi-

natorial proof) for N (a; b; b) (this settles in particular Propp's original question; Figure 1

shows the region corresponding to a = 2, b = 4).

Let SC(a; b; c) be the number of self-complementary pane partitions that �t in an a�b�c

box (see [8] for the de�nition). In [8] it is given a simple product formula for SC(a; b; c).
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Theorem 1.

N (a; b; b) = SC(a + 1; b; b)SC(a; b+ 1; b+ 1):

Proof. Let G be the graph dual to the region of the triangular lattice obtained from a

hexagon of size a� (b+1)� b� (a+ 1)� b� (b+ 1) by removing the central unit triangle

(Figure 2(a) illustrates this for a = 2, b = 4). Any lozenge tiling of our region can be

identi�ed with a perfect matching of G. Therefore, N (a; b; b) is just the number M (G) of

perfect matchings of G.

The graph G has a symmetry axis; let v

1

; v

2

; : : : ; v

2b

be the vertices of G on this axis,

as they occur from left to right. It is immediate to check that all the conditions in the

hypothesis of the Factorization Theorem of [1] are met. Applying this to G we obtain that

M (G) = 2

b

M (G

+

)M (G

�

); (2)

where G

+

(resp., G

�

) is the top (resp., bottom) connected component of the subgraph of

G obtained by removing the edges incident to the v

i

's from above, for 1 � i � b, the edges

incident to the v

i

's from below, for b + 1 � i � 2b, and �nally by weighting by 1/2 the

edges of these two subgraphs along the symmetry axis of G (see Figure 2(b)).

Consider now the a�(b+1)�(b+1) honeycomb graph H (the case a=2, b=4 is pictured

in Figure 3(a)); the matchings of this graph are in bijection with the plane partitions �tting

in an a� (b+ 1)� (b+ 1) box. According to this bijection, SC(a; b+ 1; b+ 1) is equal to

the number of matchings of H that are invariant under rotation by 180 degrees.
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LetH

1

be the subgraph ofH induced by the vertices on or above its horizontal symmetry

axis ` (the boundary of H

1

is shown in thick solid lines in Figure 3(a)). Label the vertices

of H

1

on ` according to their distance to the center of H (the two closest vertices are

labeled 1, the next two closest 2, and so on). Denote by H

2

the graph obtained from H

1

by identifying vertices with the same label (if two edges have both endpoints identi�ed

they are considered identical; note that the edge whose endpoints are labeled 1 gives rise

to a loop). The matchings of H invariant under rotation by 180 degrees can be identi�ed

with the matchings of H

2

. Therefore,

M (H

2

) = SC(a; b+ 1; b+ 1): (3)

The graphH

2

can be symmetrically embedded in the plane. The symmetry axis contains

precisely b+ 1 of its vertices. Therefore, if b is even, all perfect matchings of H

2

contain

the loop at the vertex labeled 1 (henceforth referred to simply as the loop), while for odd

b none of them contains it.

Suppose b is even (the case b odd is treated similarly). Since all matchings of H

2

contain the loop, we may remove it (together with the vertex labeled 1) without changing

the number of matchings of our graph; for the sake of notational simplicity, denote the

resulting graph still by H

2

.

Even though H

2

is not \separated" by its symmetry axis in the sense of [1], the variant

of the Factorization Theorem in [1,Section 7] is applicable and yields

M (H

2

) = 2

b=2

M (H

3

); (4)

where H

3

is the graph obtained fromH

1

by removing the edges incident from above to the

leftmost b+2 vertices on ` and then weighting the edges along ` of the remaining subgraph

by 1/2. However, remarkably, the graph obtained from H

3

by removing the vertices

matched by forced edges is isomorphic to G

+

(see Figure 3(b)). We obtain therefore from

(3) and (4) that

M (G

+

) = 2

�b=2

SC(a; b+ 1; b+ 1): (5)

To determine M (G

�

), take H to be the (a + 1) � b � b honeycomb graph. Construct

the graphs H

1

and H

2

as before (see Figure 4(a)). Since the symmetry axis of H

2

contains
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now b vertices (and b is even), no perfect matching of H

2

contains the loop, and therefore

we may replace H

2

by its subgraph obtained by removing this loop (and keeping the vertex

labeled 1). Applying the variant of the Factorization Theorem in [1,Section 7] we obtain

M (H

2

) = 2

b=2

M (H

3

); (6)

where H

3

is the graph obtained fromH

1

by removing the edges incident from above to the

leftmost b vertices on ` and then weighting the edges along ` of the remaining subgraph

by 1/2. However, again, the graph obtained fromH

3

by removing the vertices matched by

forced edges is isomorphic to the subgraph of G

�

left after removing its vertices matched

by forced edges (see Figure 4(b)). Since now M (H

2

) = SC(a + 1; b; b), (6) implies

M (G

�

) = 2

�b=2

SC(a + 1; b; b): (7)

The statement of the theorem follows from (2), (5) and (7).
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