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Abstract. A point set satisfies the Steinhaus property if no matter how it is placed on a
plane, it covers exactly one integer lattice point. Whether or not such a set exists, is an
open problem. Beck has proved [1] that any bounded set satisfying the Steinhaus property
is not Lebesgue measurable. We show that any such set (bounded or not) must have empty
interior. As a corollary, we deduce that closed sets do not have the Steinhaus property, fact
noted by Sierpinski [3] under the additional assumption of boundedness.

The purpose of this paper is to prove the following

Theorem. Any set S having the Steinhaus property has empty interior.

Our proof requires a number of preliminary lemmas. For m,n ∈ Z, denote by Am,n

the unit square of the lattice Z
2 having its upper-left corner at (m,n). For any subset

M ⊂ Am,n we denote by M(mod 1) the set M + (−m,−n). For θ ∈ [0, 2π), S(θ) is the
set obtained from S by a rotation of angle θ around the origin. The unit squares Am,n

are considered to contain their north and west sides, and not their south and east sides,
so that they form a partition of R2.

Lemma 1. A set S satisfies the Steinhaus property if and only if {S(θ)∩Am,n (mod 1)}m,n

is a partition of A0,0, for all θ ∈ [0, 2π).

Proof. We prove that for any set E ⊂ R
2, {E ∩Am,n (mod 1)}m,n is a partition of A0,0

iff every translation of E contains exactly one lattice point. This implies the statement of
the lemma.

Indeed, suppose E satisfies the latter, and let Em,n = E∩Am,n(mod 1). To see that the
Em,n’s are disjoint, suppose x ∈ Em,n∩Em′,n′ . Then x+(m,n), x+(m′, n′) ∈ E. Therefore,
the translation of S by vector (−x) contains the lattice points (m,n) and (m′, n′), so they
must coincide. To show that the Em,n’s cover A0,0, suppose towards a contradiction that
there exists y ∈ A0,0 \ ∪

m,n
Em,n. Let (k, l) be the lattice point that E′ = −y+E contains.



Then y+(k, l) belongs to both E and Ak,l, so y ∈ E∩Ak,l (mod 1) = Ek,l, a contradiction.
Conversely, if E has the above partition property, then the translates of E contain at most
one lattice point because the Em,n’s are disjoint, and at least one since the Em,n’s cover
A0,0. �

Lemma 2. If intS 6= ∅, then S must be bounded.

Proof. Assume that S contains a closed disc of radius r > 0. Without loss of generality
we may consider it centered at the origin. Then for any integer n representable in the
form x2+ y2, where x and y are integers, the annulus A(0;

√
n− r,

√
n+ r) cannot contain

points of S. For if it contained u ∈ S, then since the point v on the ray Ou such that
|v| = |u|−√

n lies inside the closed disc of radius r centered at the origin, we would obtain

two points of S
√

x2 + y2 units apart, and we could map these onto two lattice points by
a suitable isometry. Therefore,

S ⊆ R
2 \ ∪

n=x2+y2

A(0;
√
n− r,

√
n+ r). (1)

But it is easy to see that if a1, a2, ... is the increasing sequence of all integers that are
sums of two squares, then limn→∞(

√
an+1 −

√
an) = 0. This shows that the union in (1)

contains the exterior of some circle centered at the origin. So S is bounded. �

Assume that S has the Steinhaus property and contains a closed disc of radius r > 0,
centered at the origin. By Lemma 2, S is bounded. Let S ⊆ [−N,N ]2, for some positive
integer N . For each lattice point (x, y) 6= (0, 0) with −N ≤ x, y ≤ N , consider the annulus

A(0;
√

x2 + y2−r,
√

x2 + y2+r) (see Figure 1). Let D be the union of these annuli. Then,
by the Steinhaus property, S ∩D = ∅.

Denote by Cm,n the connected component of Am,n ∩D (mod 1) containing the origin.
Consider

I(r) =

N
⋂

m,n=−N,(m,n) 6=(0,0)

Cm,n. (2)

Lemma 3. I(r) ⊆ S.

Proof. Let x ∈ I(r) ⊆ A0,0. By Lemma 1, there exist m,n such that x ∈ S ∩
Am,n (mod 1), i.e., x + (m,n) ∈ S. We claim that (m,n) = (0, 0). Indeed, suppose
this is not the case. Then, since x ∈ I(r), we have x ∈ Cm,n ⊆ Am,n ∩ D (mod 1),
and hence x + (m,n) ∈ D. So x + (m,n) would be in the intersection of S and D, a
contradiction. Therefore, x = x+ (0, 0) ∈ S. �

Lemma 4. I(r) =
N
⋂

m,n=0,(m,n) 6=(0,0)

Cm,n.

Proof. Let us denote the expression on the right by I0(r). Suppose first that exactly
one of m and n is negative. Then Cm,n contains the lower-right quarter P of the square
that circumscribes the disc of radius r centered at the origin and has sides parallel to
the coordinate axes. Since C1,0 ∩ C0,1 is contained in P , we obtain that I0(r) ⊆ Cm,n in
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Figure 1

this case. Second, if both m and n are negative, then we have C−m,−n ⊆ Cm,n, so again
I0(r) ⊆ Cm,n. �

Proof of Theorem. Suppose that intS 6= ∅. Define

R = sup{r > 0 : S contains some closed disc of radius r}. (3)

Observe that for any (m,n) 6= (0, 0), 0 ≤ m,n ≤ N , Cm,n contains the lower-right
quarter Q of the closed disc of radius r centered at the origin. Moreover, for each such
m and n, there is a unique ray of Q that ends on the boundary of Cm,n (since the disc
of radius r centered at (m,n) touches the boundary of the annulus that contains it at
two diametrically opposite points). Therefore, I(r) contains Q, and there are only a finite
number of rays of Q that end on the boundary of I(r). This implies that, if M(r) =
max{|x| : x ∈ I(r)}, then M(r)/r > 1. Note that as long as S ⊆ [−N,N ]2, I(r) and M(r)
are independent of S.

Let N be such that S(θ) ⊆ [−N,N ]2 for all θ ∈ [0, 2π). Choose x ∈ I(r) with |x| =
M(r). By Lemma 3 applied to S(θ), we obtain that the line segment Ox is contained in
S(θ), for all θ ∈ [0, 2π). This implies that the closed disc of radius M(r) centered at the
origin is contained in S. Lemma 5 shows that r can be chosen such that M(r) is larger
than R, a contradiction. �

3



Lemma 5. If r1 < r2, then M(r1)/r1 ≥ M(r2)/r2. In particular, M(r)/r ≥ M(R)/R > 1
for any r such that S contains a closed disc of radius r centered at the origin.

Proof. For any positive number a and plane set X let aX = {ax : x ∈ X}. Since dila-
tions preserve proportions, we have that M(r)/r = max{|x| : x ∈ (1/r)I(r)}. Therefore it
suffices to prove that (1/r2)I(r2) ⊆ (1/r1)I(r1).

Let m,n ≥ 0, (m,n) 6= (0, 0) be fixed and let α =
√
m2 + n2. For simplicity, write C1

for the set Cm,n corresponding to r1 and C2 for the one corresponding to r2. By Lemma
4, it is enough to show that

1

r2
C2 ⊆ 1

r1
C1. (4)

Both (1/r1)C1 and (1/r2)C2 are convex sets bounded by the coordinate axes and a
circle. The two circles contain the unit circle and touch it at the same point. Thus, the
set bounded by the circle with larger curvature is contained in the other one. Since the
two curvatures are r1/(α+ r1) and r2/(α+ r2), respectively, we obtain relation (4). �

Corollary. If S has the Steinhaus property, then it cannot be closed.

Proof. Suppose there exists a closed set S satisfying the Steinhaus property. Consider
the closed square P = [0, 1/2]× [−1/2, 0] ⊂ A0,0. Let Pm,n = P + (m,n). By Lemma 1,
{Pm,n ∩ S (mod 1)}m,n is a partition of P into closed sets. Therefore, by Baire’s theorem
(e.g., [2], p. 387), there exist m,n such that int{Pm,n ∩ S (mod 1)} 6= ∅. This implies
intS 6= ∅, a contradiction. �
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