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Abstract

A plane graph is called symmetric if it is invariant under the reflection
across some straight line (called symmetry axis). Let G be a symmetric
plane graph. We prove that if there is no edge in G intersected by its
symmetry axis then the number of spanning trees of G can be expressed
in terms of the product of the number of spanning trees of two smaller
graphs, each of which has about half the number of vertices of G.
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1 Introduction

Throughout this paper, we assume that G = (V (G), E(G)) is a connected and un-

weighted graph with no loops, having vertex set V (G) = {a1, a2, . . . , an} and edge set

E(G) = {e1, e2, . . . , em}. Denote the degree of vertex ai by dG(ai) (or d(ai)), the diagonal

matrix of vertex degrees of G by D(G), the adjacency matrix of G by A(G), and the

Laplacian matrix of G by L(G) = D(G) − A(G). The reader is referred to Biggs [1] for

terminology and notation not defined here.

Methods for enumerating spanning trees in a finite graph, a problem related to various

areas of mathematics and physics, have been investigated for more than 150 years (see

[10]). We denote the number of spanning trees of the graph G by t(G). A well-known

formula for t(G) is “the Matrix-Tree Theorem” (see e.g. Biggs [1] or Bondy and Murty

[2]), which expresses it as a determinant.

Theorem 1[1,2] (the Matrix-Tree Theorem)

Let G be a graph with n vertices and denote by L(G) the Laplacian matrix of G. Then

t(G), the number of spanning trees of G, equals the determinant of the submatrix obtained

by deleting row ar and column ar from L(G) for any 1 ≤ r ≤ n.
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Fig. 1 (a) A plane graph G. (b) The dual graph of G.

Given a plane graph G (see Fig. 1(a)), we denote the dual graph of G by G⊥ (see Fig.

1(b)); its vertices, edges and faces corresponding to faces, edges and vertices of G, respec-

tively (including a vertex, here marked f ∗, that corresponds to the unbounded, external

face of G, and is represented in ”extended form”, i.e., as a spread-out region rather than

a small dot). We can embed G and G⊥ simultaneously in the plane, such that an edge e

of G crosses the corresponding dual edge e⊥ of G⊥ exact once and crosses no other edge

of G⊥. Given a spanning tree T of G, the edges of G⊥ that do not cross edges of T form

a spanning tree of G⊥; this is called the dual tree and we denoted it by T⊥. There is a

standard bijection T 7−→ T⊥ between the spanning trees of G and those of G⊥. Namely, if

T has edge set {e1, e2, . . . , en−1}, then T⊥ has edge set E(G⊥) \ {e⊥1 , e⊥2 , . . . , e⊥n−1}, where

E(G⊥) denotes the edge set of G⊥. Hence we have the following

Theorem 2[11,13] Suppose that G is a connected plane graph and G⊥ is the dual

graph of G. Then

t(G) = t(G⊥).

The above result can be found for instance in Stanley [13] (exercise 5.72) and Lovász

[11] (§5, exercise 23). Some related work appears in references [7], [3], [4], [9], [14], and [12].

Remark 3 Suppose that G is a connected plane graph with weights on its edges. Let

t(G) denote the sum of the weights of the spanning trees of G, where the weight of a

spanning tree T of G is the product of the weights of the edges of T . Let G⊥ be the

dual of G, with the weight of edge e⊥ of G⊥ taken to be the same as the weight of the

corresponding edge e in G. Then it is easy to see that t(G) and t(G⊥) are not equal in

general.
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This paper is inspired by two results, one of which concerns the bijection between

spanning trees of a general plane graph and perfect matchings of a related graph (see e.g.

[15] or [11]). The second is the matching factorization theorem related to the number

of perfect matchings on a class of graphs with reflective symmetry presented in [5]. The

matching factorization theorem expresses the number of perfect matchings of a symmetric

plane bipartite graph G in terms of the product of the number of perfect matchings of two

subgraphs of G, each of which has about half the number of vertices of G. Based on this

it is natural to ask whether there exists a similar result for the number of spanning trees

of a plane graph with reflective symmetry. The main result of this paper, Theorem 4,

answers this question in the affirmative. We present both an algebraic and a combinatorial

solution for this.
The result stated in Theorem 4 was found by the second and third authors, who also

gave the algebraic proof. The combinatorial proof was supplied by the first author.

Fig. 2 (a) A symmetric plane graph G. (b) The graph G⊥ − f ∗.

2 Main result

Let G be a connected plane graph. We say that G is symmetric if it is invariant

under the reflection across some straight line ℓ (called symmetry axis). We consider ℓ to

be vertical. Fig. 2(a) shows an example of a symmetric graph. Let G be a symmetric

plane graph with symmetry axis ℓ intersecting no edge of G (edges lying entirely along
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the symmetry axis are allowed, like for instance edges a2a3, a4a5 and a5a6 in the graph

G showed in Fig. 2(a)). The number of bounded faces of G intersected by its symmetry

axis is denoted by ω(G). For the graph G pictured in Fig. 2(a), there are two bounded

faces, here marked f1 and f2, intersected by ℓ, so ω(G) = 2. Let a1, a2, . . . , ak be the

vertices of G lying on ℓ. Let G′

L and G′

R be the subgraphs of G at the left and right sides

of ℓ, respectively. We denote the subgraphs of G induced by V (G′

L) ∪ {a1, a2, . . . , ak}

and V (G′

R) ∪ {a1, a2, . . . , ak} by GL and GR, respectively. Let G1 be the graph obtained

from GL by subdividing once each edge of GL lying on the symmetry axis, and G2 the

graph obtained from GR by identifying all vertices a1, a2, . . . , ak (any loops created by

the identification of the vertices on ℓ are discarded). Fig. 3 and Fig. 4 illustrate this

procedure for the graph pictured in Fig. 2(a). Now we can state our main result as follows.

Theorem 4 Let G be a symmetric plane graph with symmetry axis ℓ intersecting no

edge of G, and let G1 and G2 be the graphs defined above. Then the number of spanning

trees of G is given by

t(G) = 2ω(G)t(G1)t(G2),

where ω(G) denotes the number of bounded faces of G intersected by ℓ.

Fig. 3 (a) The graph GL. (b) The graph GR.
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Fig. 4 (a) The graph G1. (b) The graph G2.

Fig. 5 (a) The graph G⊥

1 − f ∗

1 (or (G⊥ − f ∗)′L, or G⊥

L − f ∗

L). (b) The graph G⊥

2 − f ∗

2 .

We will give two methods to prove Theorem 4, one algebraic and the other combina-

torial.
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Algebraic proof of Theorem 4 Without loss of generality, we may assume that G

is connected. Let G⊥ be the dual graph of G. Denote the bounded faces of G intersected

by the symmetry axis by f1, f2, . . . , fω(G), from top to bottom. It is not difficult to see

that the following claims hold (see Fig. 2(b)).

Claim 1 G⊥−f ∗ can be drawn as a symmetric plane graph with the same symmetry

axis ℓ, where f ∗ is the vertex of G⊥ corresponding to the unbounded, external face of G,

and G⊥ − f ∗ denotes the subgraph of G⊥ induced by deleting vertex f ∗ from G⊥.

Claim 2 There exist exactly ω(G) vertices of G⊥ − f ∗ lying on the symmetry axis

ℓ; denote them also by fi (i = 1, 2, . . . , ω(G)). Moreover, the subgraph of G⊥ induced

by the vertices fi for i = 1, 2, . . . , ω(G) is an “even” weighted graph, that is, there are

2sij (sij ≥ 0) edges from vertex fi to vertex fj for i, j = 1, 2, . . . , ω(G), where 2sij is the

number of common edges of the faces fi and fj of G for i = 1, 2, . . . , ω(G).

Claim 3 The edges of G⊥ − f ∗ that cross the symmetry axis ℓ (if such edges exist)

form a (partial) matching K of G⊥ − f ∗. Moreover, the reflection across ℓ interchanges

the endpoints of each edge of K. For the graph G⊥ − f ∗ in Fig. 2(b), there exist three

edges f3f
′

3, f4f
′

4 and f5f
′

5 crossing the symmetry axis ℓ, which form a matching of G⊥−f ∗.

Let A(G⊥ − f ∗) denote the adjacency matrix of G⊥ − f ∗, and let A be the adjacency

matrix of the graph (G⊥−f ∗)′L, which is the subgraph of G⊥−f ∗ induced by the vertices

of G⊥ − f ∗ at the left side of ℓ (see Fig. 2(b) and Fig. 5(a)). By the definition of G1, it is

not difficult to see that (G⊥ − f ∗)′L and G⊥

1 − f ∗

1 (or G⊥

L − f ∗

L) are isomorphic, where G⊥

1

and G⊥

L are the dual graphs of G1 and GL, respectively, and f ∗

1 and f ∗

L are the vertices of

G⊥

1 and G⊥

L corresponding to the unbounded, external faces of G1 and GL. Therefore the

following claim holds.

Claim 4 The adjacency matrix of G⊥

1 − f ∗

1 is A.

Suppose that matrix B denotes the incidence relations between the vertices of the

graph (G⊥ − f ∗)′L and the vertices of G⊥ − f ∗ lying on ℓ, and matrix C denotes the

incidence relations between (G⊥−f ∗)′L and (G⊥−f ∗)′R, which is the subgraph of G⊥−f ∗

induced by vertices of G⊥ − f ∗ at the right side of ℓ. It is clear that (G⊥ − f ∗)′L and

(G⊥ − f ∗)′R are two isomorphic subgraphs of G⊥ − f ∗. Let X = (xij)ω(G)×ω(G) denote

the adjacency matrix of the subgraph of G⊥ induced by the vertices f1, f2, . . . , fω(G). If

we label the vertices of G⊥ − f ∗ first in V ((G⊥ − f ∗)L), and subsequently in those lying

on the symmetry axis ℓ and in V ((G⊥ − f ∗)R), then, by Claim 1, A(G⊥ − f ∗) has the

following form:

A(G⊥ − f ∗) =





A B C
BT X BT

CT B A



 .
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Note that, by Claim 3, C is represented by a diagonal matrix. Hence we have

A(G⊥ − f ∗) =





A B C
BT X BT

C B A



 ,

where

(

X BT

B A

)

is the adjacency matrix of the subgraph of G⊥ − f ∗ induced by

V (G⊥− f ∗) \V ((G⊥− f ∗)′L) (see Fig. 5(b)), denoted by G[V (G⊥ − f ∗) \V ((G⊥− f ∗)′L)].

Note that, by the definition of G2, G2 is obtained from GR by identifying all vertices

a1, a2, . . . , ak lying on the symmetry axis ℓ. It is clear that there is a natural way to

identify faces in G2 and in G. By Claim 2, it is not difficult to see that if the number of

common edges of fi and fj (i, j = 1, 2, . . . , ω(G)) in G⊥ − f ∗ is 2sij then the number of

common edges of fi and fj (i, j = 1, 2, . . . , ω(G)) in G⊥

2 −f ∗

2 is sij, where f ∗

2 is the vertex of

G⊥

2 corresponding to the unbounded, external face of G2. Hence the following claim holds.

Claim 5 The adjacency matrix of G⊥

2 − f ∗

2 is

(

1
2
X BT

B A

)

.

Let D(G⊥) and A(G⊥) denote the diagonal matrix of vertex degrees and the adjacency

matrix of G⊥, respectively. Then the submatrix of the Laplacian L(G⊥) of G⊥ obtained

by deleting row f ∗ and column f ∗ from L(G⊥) has the following form:





D1

D2

D1



 −





A B C
BT X BT

C B A



 =





D1 − A −B −C
−BT D2 − X −BT

−C −B D1 − A



 ,

where D1 is the diagonal submatrix of D(G⊥) corresponding to those vertices of G⊥−f ∗ on

the left side of ℓ, and D2 is the diagonal submatrix of D(G⊥) corresponding to those ver-

tices of G⊥−f ∗ lying on ℓ. For the graph G in Fig. 2(a), the vertices fi (3 ≤ i ≤ 10) of G⊥

are on the left side of ℓ and the vertices f1 and f2 are on the symmetry axis. Thus, the en-

tries of the diagonal submatrix D1 are dG⊥(fi) (3 ≤ i ≤ 10) and the entries of the diagonal

submatrix D2 are dG⊥(f1) and dG⊥(f2); by Fig. 2(a), dG⊥(f1) = 4, dG⊥(f2) = 6, dG⊥(f3) =

4, dG⊥(f4) = 4, dG⊥(f5) = 3, dG⊥(f6) = 3, dG⊥(f7) = 3, dG⊥(f8) = 3, dG⊥(f9) = 5, and

dG⊥(f10) = 4. Hence, for the graph G showed in Fig. 2(a), the corresponding matrices

A, B, C, X, D1 and D2 can be denoted as follows:

A =

























0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
1 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0

























, B =

























0 1
0 1
0 0
1 0
1 0
0 0
0 0
0 0

























,
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C =

























1
1

1
0

0
0

0
0

























, D1 =

























4
4

3
3

3
3

5
4

























,

X =

(

0 0
0 0

)

, D2 =

(

4
6

)

.

Therefore, by the Matrix-Tree Theorem (Theorem 1) and Theorem 2, we have

t(G) = t(G⊥) = det





D1 − A −B −C
−BT D2 − X −BT

−C −B D1 − A





= det





D1 − A −B −C
−BT D2 − X −BT

D1 − A − C −2B D1 − A − C





= det





D1 + C − A −B −C
0 D2 − X −BT

0 −2B D1 − C − A





= det(D1 + C − A) det

(

D2 − X −BT

−2B D1 − C − A

)

.

Note that D2 is an ω(G) × ω(G) matrix, hence we have

t(G) = t(G⊥) = det(D1 + C − A) det

(

D2 − X −BT

−2B D1 − C − A

)

= 2ω(G) det(D1 + C − A) det

(

1
2
(D2 − X) −BT

−B D1 − C − A

)

.

Hence, in order to prove Theorem 4, it suffices to prove that the following two equalities

hold.

t(G1) = det(D1 + C − A), t(G2) = det

(

1
2
(D2 − X) −BT

−B D1 − C − A

)

.

Note that t(G1) = t(G⊥

1 ) and t(G2) = t(G⊥

2 ). Thus, by Claim 4 and Claim 5, it is

enough to prove that the following two claims hold.

Claim 6 Matrix D1 + C is the diagonal submatrix of D(G⊥

1 ) obtained from the di-

agonal matrix D(G⊥

1 ) of vertex degrees of G⊥

1 by deleting row f ∗

1 and column f ∗

1 .
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Claim 7 Matrix

(

1
2
D2 0
0 D1 − C

)

is the diagonal submatrix of D(G⊥

2 ) obtained

from the diagonal matrix D(G⊥

2 ) of vertex degrees of G⊥

2 by deleting row f ∗

2 and column

f ∗

2 .

First, we prove Claim 6. Since C, which is a diagonal matrix, denotes the incidence

relations between vertices of (G⊥−f ∗)′L and those of (G⊥−f ∗)′R, the (i, i)-entry of D1+C

equals dG⊥(fi)+cii, where dG⊥(fi) is the degree of vertex fi of G⊥ (i.e., the number dG(fi)

of edges on the boundary of the face fi of G), and

cii =







1 if there exists an edge on the boundary of the
face fi of G lying on the symmetry axis l,

0 otherwise.

Set
ΦL = {f | f is a bounded face of G which is at the left side of the symmetry axis l},

ΦR = {f | f is a bounded face of G which is at the right side of the symmetry axis l},

ΦM = {f | f is a bounded face of G which is intersected by the symmetry axis l}.

It is clear that V (G⊥) = ΦL ∪ ΦM ∪ ΦR ∪ {f ∗}.

Note that, by the definition of G1, G1 is obtained from GL by subdividing once every

edge lying on the symmetry axis ℓ. Hence, for every face fi ∈ ΦL of G on the left side

of the symmetry axis (which may correspond to a face fi in G1), if there is an edge on

the boundary of the face fi lying on the symmetry axis ℓ, then dG1
(fi) = dG(fi) + 1;

otherwise, dG1
(fi) = dG(fi). So we have proved that D1 + C is the diagonal submatrix

of D(G⊥

1 ) obtained from the diagonal matrix D(G⊥

1 ) of vertex degrees of G⊥

1 by deleting

row f ∗

1 and column f ∗

1 . This proves Claim 6.

Now we turn to proving Claim 7. Note that, by the definition of G2, G2 is obtained

from GR by identifying all vertices a1, a2, . . . , ak lying on the symmetry axis ℓ. Hence, for

every face fi ∈ ΦM ∪ ΦR of G (which may corresponds to a face fi in G2), if fi ∈ ΦM

we have dG2
(fi) = 1

2
dG(fi). For fi ∈ ΦR, if there is an edge on the boundary of the face

fi lying on the symmetry axis ℓ then dG2
(fi) = dG(fi) − 1; otherwise, dG2

(fi) = dG(fi).

So we have showed that

(

1
2
D2 0
0 D1 − C

)

is the diagonal submatrix of D(G⊥

2 ) obtained

from the diagonal matrix D(G⊥

2 ) consisting of the vertex degrees of G⊥

2 by deleting row

f ∗

2 and column f ∗

2 . This proves Claim 7, and concludes our first proof of Theorem 4.

Before presenting the combinatorial proof of Theorem 4, we need to state in detail the

connection between spanning tree and perfect matching enumeration mentioned in the

Introduction. This is given by Lemma 5.

For a weighted graph G, the weight of a spanning tree is defined to be the product

of the weights of all the edges of the spanning tree, and t(G) as the sum the weights of

all the spanning trees of G. Similarly, the weight of a perfect matching is the product

of the weights of the edges in it. Let M(G) denote the sum of the weights of all perfect
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matchings of G.

Lemma 5 (Temperley [18], Lovász [13, Exercise 4.30]) Let G be a weighted plane

graph with vertex set V = {a1, . . . , an} and edge set E = {e1, . . . , em}. Let {f1, . . . , fp}

be the bounded faces of G. Choose bi to be a point in the interior of the edge ei, and cj

a point in the interior of the face fj, for i = 1, . . . , m, j = 1, . . . , p.

Define T (G) to be the weighted graph with vertex set {a1, . . . , an, b1, . . . , bm, c1, . . . , cp}

obtained by including all edges of the following two types (see Figures 6(a) and (b) for

an illustration):

(i) if bi is on edge {ak, al} of G, include {bi, ak} and {bi, al} as edges of T (G); give

each of them the weight of {ak, al};

(ii) if cj is in the interior of a face bounding k edges, and the b-type vertices around this

face are {bq1
, . . . , bqk

}, include edges {cj, bq1
}, . . . , {cj, bqk

} as edges of T (G), and weight

them by 1.

Let v ∈ {a1, . . . , an} be a vertex on the unbounded face of T (G). Then

t(G) = M(T (G) \ v).

Edges whose weight we do not indicate explicitly are considered to have weight 1. If

all weights are 1, t(G) and M(G) become the number of spanning trees and the number

of perfect matchings of G, respectively.

Fig. 6 (a) A plane graph G. (b) The graph T (G).

Combinatorial proof of Theorem 4 Let v be the topmost vertex of G on the

symmetry axis ℓ. Denote the graph T (G) \ v by H . Then by the above lemma we have

t(G) = M(H).

Clearly, H can be drawn in the plane so as to be symmetric about the symmetry axis

ℓ. In addition, each edge of T (G) has one endpoint in {a1, . . . , an, c1, . . . , cp} and the other
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in {b1, . . . , bm}, so H is bipartite. Thus we can apply to it the factorization theorem for

perfect matchings presented in [6].

Let P be a plane curve that closely approximates ℓ and leaves all the a- and b-type

vertices on ℓ on the left, and all c-type vertices on ℓ on the right. It follows then from the

factorization theorem of [6] that

M(H) = 2w(H)M(H+)M(H−),

where H+ and H− are the left and right “halves” of H obtained by removing the edges of

H that cross P , with the additional specification that all edges of H+ along ℓ are given

weight 1/2.

However, one readily sees that H+ is isomorphic to T (G′

L) \ v, where G′

L is the graph

obtained from GL by weighting its edges along ℓ by 1/2. Similarly, H− is seen to be

isomorphic to T (G2)\u, where u is the vertex of G2 obtained by identifying all vertices of

GR that are on ℓ. Therefore, by Lemma 5, we have M(H+) = t(G′

L) and M(H−) = t(G2).

Moreover, it is easy to see that w(H) = νℓ − 1, where νℓ is the number of vertices of G

on ℓ. Thus, the above displayed equation can be rewritten as

t(G) = 2νℓ−1t(G′

L)t(G2).

To prove the statement of the theorem it suffices to show that

2νℓ−1t(G′

L) = 2ω(G)t(G1).

It follows from the definitions of ω(G) and νℓ that ω(G) = νℓ − 1 − eℓ, where eℓ is the

number of edges of G along ℓ. Therefore the last equation amounts to

2eℓt(G′

L) = t(G1).

Given the definitions of G′

L and G1, this follows by repeated application of Lemma 6.

Lemma 6 Let G be a graph with vertex set V and edge set E. Let a, b and x be

three distinct points outside V , and let {c, d} ∈ E. Construct the graph G1 = (V1, E1) by

setting V1 = V ∪{a, b}, E1 = E∪{a, b}∪{a, c}∪{b, d}. Assign weight 1 to all edges of G1

except {a, b}; weight {a, b} by 1/2. Let G2 = (V2, E2) be the graph with V2 = V ∪{a, b, x}

and E2 = E ∪ {a, x} ∪ {b, x} ∪ {a, c} ∪ {b, d}. Weight all edges of G2 by 1. Then we have

2t(G1) = t(G2).

Proof Partition the family T (G1) of the spanning trees of G1 as C1 ∪ C2, where C1

consists of the spanning trees of G1 that contain the edge {a, b} and C2 of the spanning

trees not containing this edge. Write T (G2) = C ′

1 ∪ C ′

2 ∪ C ′

3, where C ′

1 is the collection

of spanning trees of G2 that contain both {a, x} and {b, x}, C ′

2 consists of the spanning

trees not containing {a, x}, and C ′

3 of those not containing {b, x}.
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Contracting the edge {b, x} to a point defines a bijection g : C ′

2 7→ C2. Similarly,

contracting the edge {a, x} to a point defines a bijection h : C ′

3 7→ C2. Removing x and

the incident edges and including the edge {a, b} defines a bijection f : C ′

1 7→ C1. Further-

more, for any spanning tree T of G2 the weight wt(T ) of T and that of its image satisfy

wt(f(T )) = 1
2
wt(T ) and wt(g(T )) = wt(h(T )) = wt(T ). This implies the statement of

the lemma.
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