IMPORTANT DEFINITIONS AND THEOREMS
REFERENCE SHEET

This is a (not quite comprehensive) list of definitions and theorems given in Math 1553.
Pay particular attention to the ones in red.

Study Tip

—

For each definition, find an example of something that satisfies the re-
quirements of the definition, and an example of something that does
not. For each theorem, find an example of something that satisfies the
hypotheses of the theorem, and an example of something that does not
satisfy the conclusions (or the hypotheses, of course) of the theorem.
This is great conceptual practice.

CHAPTER 1

SECTION 1.1.

Definition. A solution to a system of linear equations is a list of numbers making all of
the equations true.

Definition. The elementary row operations are the following matrix operations:

e Multiply all entries in a row by a nonzero number (scale).

e Add (a multiple of) each entry of one row to the corresponding entry in another
(row replacement).

e Swap two rows.

Definition. Two matrices are called row equivalent if one can be obtained from the
other by doing some number of elementary row operations.

Definition. A system of equations is called inconsistent if it has no solution. It is con-
sistent otherwise.

SECTION 1.2.

Definition. A matrix is in row echelon form if

(1) All zero rows are at the bottom.

(2) Each leading nonzero entry of a row is to the right of the leading entry of the row
above.

(3) Below a leading entry of a row, all entries are zero.

Definition. A pivot is the first nonzero entry of a row of a matrix in row echelon form.
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Definition. A matrix is in reduced row echelon form if it is in row echelon form, and
in addition,

(4) The pivot in each nonzero row is equal to 1.

(5) Each pivot is the only nonzero entry in its column.

Theorem. Every matrix is row equivalent to one and only one matrix in reduced row echelon
form.

Definition. Consider a consistent linear system of equations in the variables x;,...,x,.
Let A be the reduced row echelon form of the matrix for this system. We say that x; is a
free variable if its corresponding column in A is not a pivot column.

Definition. The parametric form for the general solution to a system of equations is a
system of equations for the non-free variables in terms of the free variables. For instance,
if x, and x, are free,

X, =2—3x, X3 =—1—4x,
is a parametric form.

Theorem. Every solution to a consistent linear system is obtained by substituting (unique)
values for the free variables in the parametric form.

Fact. There are three possibilities for the solution set of a linear system with augmented
matrix A:

(1) The system is inconsistent: it has zero solutions, and the last column of A is a pivot
column.

(2) The system has a unique solution: every column of A except the last is a pivot column.

(3) The system has infinitely many solutions: the last column isn’t a pivot column, and
some other column isn’t either. These last columns correspond to free variables.

SECTION 1.3.
Definition. R" = all ordered n-tuples of real numbers (x;, X5, X3, ..., X,).
Definition. A vector is an arrow with a given length and direction.
Definition. A scalar is another name for a real number (to distinguish it from a vector).
Review. Parallelogram law for vector addition.
Definition. A linear combination of vectors v;, v, ..., V, is a vector of the form
Vi F vy + -4y,

where ¢y, ¢,,...,c, are scalars, called the weights or coefficients of the linear combina-
tion.

Definition. A vector equation is an equation involving vectors. (It is equivalent to a list
of equations involving only scalars.)

Definition. The span of a set of vectors v, v,,...,V, is the set of all linear combinations
of these vectors:

Span{vy,...,v,} = {x1v1+---+xpvp X155 X, inR}.
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SECTION 1.4.

Definition. The product of an m x n matrix A with a vector x in R" is the linear combi-
nation
X1

| [ x

Ax=| vy vy -+ Vv, o E XV XYy e XY,
. | '

The output is a vector in R™.

Definition. A matrix equation is a vector equation involving a product of a matrix with
a vector.

Theorem. Ax = b has a solution if and only if b is in the span of the columns of A.

Theorem. Let A be an m x n (non-augmented) matrix. The following are equivalent
(1) Ax = b has a solution for all b in R™.
(2) The span of the columns of A is all of R™.
(3) A has a pivot in each row.

SECTION 1.5.
Definition. A system of linear equations of the form Ax = 0 is called homogeneous.

Definition. A system of linear equations of the form Ax = b for b # 0 is called inhomo-
geneous or non-homogeneous.

Definition. The trivial solution to a homogeneous equation is the solution x = 0: A0 =
0.
Theorem. Let A be a matrix. The following are equivalent:

(1) Ax = 0 has a nontrivial solution.
(2) There is a free variable.
(3) A has a column with no pivot.

Theorem. The solution set of a homogeneous equation Ax = 0 is a span.

Definition. The parametric vector form for the general solution to a system of equations
Ax = b is a vector equation expressing all variables in terms of the free variables. For
instance, if x, and x, are free,

X1 2 0 -3
x|l | O 1 0

X = x| T | =1 + X, 0 + x4 _4
X4 0 0 1

is a parametric vector form. The constant vector (2,0,—1,0) is a specific solution or
particular solution to Ax = b.

Theorem. The solution set of a linear system Ax = b is a translate of the solution set of
Ax = 0 by a specific solution.
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SECTION 1.7.

Definition. A set of vectors {vy,V,,...,v,} in R" is linearly independent if the vector
equation

X1V + XV o+ x,v, =0
has only the trivial solution x; = x, =---=x, =0.

Definition. A set of vectors {v;,v,,...,v,} in R" is linearly dependent if the vector equa-
tion

has a nontrivial solution (not all x; are zero). Such a solution is a linear dependence
relation.

Theorem. A set of vectors {v,,V,,...,Vv,} is linearly dependent if and only if one of the
vectors is in the span of the other ones.

Fact. Say v;,V,,...,v, arein R™. If n > m then {v,V,,...,v,} is linearly dependent.
Fact. If one of v, V,,...,V, is zero, then {v,,Vv,,...,v,} is linearly dependent.

Theorem. Let v,,V,,...,V, be vectors in R™, and let A be the m x n matrix with columns
V1,Vy,...,V,. The following are equivalent:

(1) The set {v,V,,...,Vv,} is linearly independent.

(2) No one vector is in the span of the others.

(3) For every j between 1 and n, v; is not in Span{vy,v,,...,v;_;}.

(4) Ax =0 only has the trivial solution.

(5) A has a pivot in every column.

SECTION 1.8.

Definition. A transformation (or function or map) from R" to R™ is a rule T that assigns
to each vector x in R" a vector T(x) in R™.
e R" is called the domain of T.
e R™ is called the codomain of T.
e For x in R", the vector T(x) in R™ is the image of x under T.
Notation: x — T(x).
e The set of all images {T(x) | x in R"} is the range of T.

Notation. T: R* — R™ means T is a transformation from R" to R™.

Definition. Let A be an m x n matrix. The matrix transformation associated to A is the
transformation
T:R"— R™ defined by T(x)=Ax.
e The domain is R", where n is the number of columns of A.
e The codomain is R™, where m is the number of rows of A.
e The range is the span of the columns of A.

Review. Geometric transformations: projection, reflection, rotation, dilation, shear.
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Definition. A linear transformation is a transformation T satisfying
Twu+v)=Tw)+T(v) and T(cv)=cT(v)

for all vectors u, v and all scalars c.

SECTION 1.9.

Definition. The unit coordinate vectors in R" are

1 0 0 0

0 1 0 0
€, = H] €, = > ] €1 = ’ € =

0 0 1 0

0 0 0 1

Fact. If A is a matrix, then Ae; is the ith column of A.

Definition. Let T: R" — R™ be a linear transformation. The standard matrix for T is

| | |
T(lel) T(lez) T(len)

Theorem. If T is a linear transformation, then it is the matrix transformation associated
to its standard matrix.

Definition. A transformation T: R" — R™ is onto (or surjective) if the range of T is
equal to R™ (its codomain). In other words, each b in R™ is the image of at least one x
in R".

Theorem. Let T: R" — R™ be a linear transformation with matrix A. Then the following
are equivalent:

e T is onto

e T(x) = b has a solution for every b in R™
e Ax = b is consistent for every b in R™

e The columns of A span R™

e A has a pivot in every row.

Definition. A transformation T: R" — R™ is one-to-one (or into, or injective) if differ-
ent vectors in R" map to different vectors in R™. In other words, each b in R™ is the
image of at most one x in R".

Theorem. Let T: R" — R™ be a linear transformation with matrix A. Then the following
are equivalent:

e T is one-to-one

e T(x) = b has one or zero solutions for every b in R™

e Ax = b has a unique solution or is inconsistent for every b in R™
e Ax = 0 has a unique solution

e The columns of A are linearly independent

e A has a pivot in every column.
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CHAPTER 2

SECTION 2.1.

Definition. The ijth entry of a matrix A is the entry in the ith row and jth column.
Notation: a;;.

Definition. The entries a;;,a,,,ass, ... are the diagonal entries; they form the main
diagonal of the matrix.

Definition. A diagonal matrix is a square matrix whose only nonzero entries are on the
main diagonal.

Definition. The n x n identity matrix I, is the diagonal matrix with all diagonal entries
equal to 1. It has the property that I,A = A for any n X m matrix A.

Definition. The zero matrix (of size m x n) is the m x n matrix 0 with all zero entries.

Definition. The transpose of an m x n matrix A is the n x m matrix AT whose rows are
the columns of A. In other words, the ij entry of AT is aj.

Definition. The product of an m x n matrix A with an n x p matrix B is the m x p matrix

. |
AB = (Avl AVZ ce AVp N
. |

where vy, v,,...,V, are the columns of B.

Fact. Suppose A has is an m x n matrix, and that the other matrices below have the right
size to make multiplication work. Then:

A(BC) = (AB)C A(B+C) = AB+AC
(B+C)A=BA+CA c(AB) = (cA)B
c¢(AB) = A(cB) A=A
Al =A

Fact. If A, B, and C are matrices, then:

(1) AB is usually not equal to BA.
(2) AB =AC does not imply B = C.
(3) AB =0 does not imply A=0or B=0.

Definition. Let T: R® — R™ and U: R? — R" be transformations. The composition is
the transformation

ToU:RP - R™ definedby ToU(x)=T(U(x)).

Theorem. Let T: R" — R™ and U: R™ — RP be linear transformations with matrices A
and B, respectively. Then the matrix for T o U is AB.
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SECTION 2.2.

Definition. A square matrix A is invertible (or nonsingular) if there is a matrix B of the
same size, such that

AB=1I, and BA=I,.
In this case we call B the inverse of A, and we write A~! = B.

Theorem. If A is invertible, then Ax = b has exactly one solution for every b, namely:
x =A"'b.

Fact. Suppose that A and B are invertible n X n matrices.
(1) A !is invertible and its inverse is (A™!)"! = A
(2) AB is invertible and its inverse is (AB) ! = B'A™.
(3) AT is invertible and (AT) ™' = (A™)T.
Theorem. Let A be an n x n matrix. Here’s how to compute A™'.

(1) Row reduce the augmented matrix (A| I,,).
(2) If the result has the form (I, | B), then A is invertible and B = A™".
(3) Otherwise, A is not invertible.

Theorem. An n x n matrix A is invertible if and only if it is row equivalent to I,. In this
case, the sequence of row operations taking A to I,, also takes I, to A™".

Definition. The determinant of a 2 x 2 matrix A= (‘Cl 2) is

det(A) = det(ccl b) — ad — be.

d
Fact. IfAis a 2 x 2 matrix, then A is invertible if and only if det(A) # 0. In this case,
1 d —-b
Al = :
det(A) (—C a )

Definition. A elementary matrix is a square matrix E which differs from the identity
matrix by exactly one row operation.

Fact. If E is the elementary matrix for a row operation, and A is a matrix, then EA differs
from A by the same row operation.

SECTION 2.3.

Definition. A transformation T: R" — R" is invertible if there exists another transfor-
mation U: R" — R" such that

ToU(x)=x and UoT(x)=x
for all x in R". In this case we say U is the inverse of T, and we write U = T,
Fact. A transformation T is invertible if and only if it is both one-to-one and onto.

Theorem. If T is an invertible linear transformation with matrix A, then T~ is an invertible
linear transformation with matrix A™".
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I'll keep all of the conditions of the IMT right here, even though we don’t encounter some
until later:

The Invertible Matrix Theorem. Let A be a square n x n matrix, and let T: R" — R" be
the linear transformation T (x) = Ax. The following statements are equivalent.

(1) Ais invertible.
(2) T is invertible.
(3) Ais row equivalent to I,,.
(4) A has n pivots.
(5) Ax =0 has only the trivial solution.
(6) The columns of A are linearly independent.
(7) T is one-to-one.
(8) Ax = b is consistent for all b in R".
(9) The columns of A span R".
(10) T is onto.
(11) A has a left inverse (there exists B such that BA=1,).
(12) A has a right inverse (there exists B such that AB = 1,).
(13) AT is invertible.
(14) The columns of A form a basis for R".
(15) ColA=R"
(16) dimColA=n.
(17) rankA=n.
(18) NulA = {0}.
(19) dimNulA=0.
(20) det(A) # 0.
(21) The number 0O is not an eigenvalue of A.

SECTION 2.8.

Definition. A subspace of R" is a subset V of R” satisfying:
(1) The zero vector isin V.
(2) fuandvareinV,thenu+visalsoin V.
(3) fuisinV and cisin R, then cuisin V.

Definition. If V = Span{v,,v,,...,v,}, we say that V is the subspace generated by or
spanned by the vectors v, v,,...,V,.

Theorem. A subspace is a span, and a span is a subspace.

Definition. The column space of a matrix A is the subspace spanned by the columns of
A. It is written Col A.

Definition. The null space of A is the set of all solutions of the homogeneous equation
Ax =0:

NulA = {x | Ax = 0}.
Example. The following are the most important examples of subspaces in this class (some
won’t appear until later):
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e Any Span{v;,v,,...,V,}.

The column space of a matrix: ColA = Span{columns of A}.
The range of a linear transformation (same as above).

The null space of a matrix: NulA = {x | Ax = O}.

The row space of a matrix: RowA = Span{rows of A}.

The A-eigenspace of a matrix, where A is an eigenvalue.
The orthogonal complement W+ of a subspace W.

The zero subspace {0}.

o All of R".

Definition. Let V be a subspace of R". A basis of V is a set of vectors {v;,V,,...,V,} in
V such that:

(1) V =Span{v;,v,,...,Vv,}, and
(2) {v,Vy,...,Vv,,} is linearly independent.

The number of vectors in a basis is the dimension of V, and is written dim V.
Theorem. Every basis for a gives subspace has the same number of vectors in it.

Fact. The vectors in the parametric vector form of the general solution to Ax = 0 always
form a basis for NulA.

Fact. The pivot columns of A always form a basis for Col A.

SECTION 2.9.

Definition. Let B = {v;,V,,...,V,} be a basis of a subspace V. Any vector x in V can be
written uniquely as a linear combination x = ¢,v; +¢c,v, + -+ + ¢, v,,. The coefficients
€1,Cy,...,Cy, are the coordinates of x with respect to B, and the vector with entries
C1,Cy, .- -, Cp is the B-coordinate vector of x, denoted [x]z. In summary,

€1

Co
[xIs=]| . means X =CyV;+CVy+ V-

c

m

Definition. The rank of a matrix A, written rankA4, is the dimension of the column space
ColA.

Rank Theorem. If A is an m x n matrix, then
rankA + dim NulA = n = the number of columns of A.

Basis Theorem. Let V be a subspace of dimension m. Then:

e Any m linearly independent vectors in V form a basis for V.
e Any m vectors that span V form a basis for V.
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CHAPTER 3

SECTION 3.1.

Definition. The ij minor of an n X n matrix A is the (n — 1) x (n — 1) matrix A;; you get
by deleting the ith row and the jth column from A.

Definition. The ij cofactor of Ais C;; = (—1)"* detA, i
Definition. The determinant of an n x n matrix A can be calculated using cofactor

expansion along any row or column:

n
detA= Z a;;C;; for any fixed i

j=1
n
detA= Z a;;C;; for any fixed j
i=1

Theorem. There are special formulas for determinants of 2 x 2 and 3 x 3 matrices:

det(ccl Z)zad—bc

a a a
112 713 A11092033 + A15093d37 + Aq301 A3
det 6121 a22 a23 =

a a a — 1305037 — A110y303p — A12051 033
31 d3p dg3

Theorem. The determinant of an upper-triangular or lower-triangular matrix is the product
of the diagonal entries.

Theorem. If A is an invertible n x n matrix, then

Cin Cy Cy Cn

1 Cip Cyp C3p -+ Cpy

Al = Ciz Cy3 Cs3 -+ Gy
detA . . : .

Cln C2n C3n Cnn

SECTION 3.2.
Definition. The determinant is a function
det: {square matrices} — R

with the following defining properties:
(1) det(I,) =1
(2) If we do a row replacement on a matrix (add a multiple of one row to another),
the determinant does not change.
(3) If we swap two rows of a matrix, the determinant scales by —1.
(4) If we scale a row of a matrix by k, the determinant scales by k.
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Theorem. You can use the defining properties of the determinant to compute the determi-
nant of any matrix using row reduction.

Magical Properties of the Determinant.

(1) There is one and only one function det: {square matrices} — R satisfying the defin-
ing properties (1)—(4).

(2) Ais invertible if and only if det(A) # O.

(3) If we row reduce A without row scaling, then

det(A) = (—1)7swars (product of diagonal entries in REF )

(4) The determinant can be computed using any of the 2n cofactor expansions.

(5) det(AB) = det(A)det(B) and det(A™!) = det(A)™*

(6) det(A) = det(A")

(7) | det(A)| is the volume of the parallelepiped defined by the columns of A.

(8) IfAis an n x n matrix with transformation T (x) = Ax, and S is a subset of R", then
the volume of T(S) is | det(A)| times the volume of S. (Even for curvy shapes S.)

(9) The determinant is multi-linear in the columns (or rows) of a matrix.

CHAPTER 5

SECTION 5.1.

Definition. Let A be an n X n matrix.

(1) An eigenvector of A is a nonzero vector v in R" such that Av = Av, for some A in
R. In other words, Av is a multiple of v.

(2) An eigenvalue of A is a number A in R such that the equation Av = Av has a
nontrivial solution.

If Av = Av for v # 0, we say A is the eigenvalue for v, and v is an eigenvector for A.
Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Fact. A matrix is invertible if and only if zero is not an eigenvalue.

Fact. Eigenvectors with distinct eigenvalues are linearly independent.

Definition. Let A be an n x n matrix and let A be an eigenvalue of A. The A-eigenspace
of A is the set of all eigenvectors of A with eigenvalue A, plus the zero vector:

A-eigenspace = {v inR"|Av = Av}
={vinR"| (A—Al)v =0}
= Nul(A—AI).
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SECTION 5.2.
Definition. Let A be an n x n matrix. The characteristic polynomial of A is
f(A) =det(A— AI).
The characteristic equation of A is the equation
f(A) =det(A—AI)=0.
Fact. If Ais an n x n matrix, then the characteristic polynomial of A has degree n.

Fact. The roots of the characteristic polynomial (i.e., the solutions of the characteristic equa-
tion) are the eigenvalues of A.

Fact. Similar matrices have the same characteristic polynomial, hence the same eigenvalues
(but different eigenvectors in general).

Definition. The algebraic multiplicity of an eigenvalue A is its multiplicity as a root of
the characteristic polynomial.

Definition. Two n x n matrices A and B are similar if there is an invertible n X n matrix
C such that A= CBC™'.

SECTION 5.3.

Definition. An n x n matrix A is diagonalizable if it is similar to a diagonal matrix:

A=PDP™! for D diagonal.

d, 0 -+ 0
0 dy,, -+ O
Fact. fA=PDP'forD=| . 7 . , then
0 0 d,,
A" =pDp"pl=p 0 dp = 0 pl.

The Diagonalization Theorem. An n x n matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors. In this case, A= PDP~! for

A, 0 - 0

| | o A 0
P=(vi v -+ Vv D= . . . s

| | 0 0 - A

where vy, V,,...,Vv, are linearly independent eigenvectors, and A, A,, ..., A, are the corre-
sponding eigenvalues (in the same order).

Corollary. An n x n matrix with n distinct eigenvalues is diagonalizable.
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Procedure. How to diagonalize a matrix A:

(1) Find the eigenvalues of A using the characteristic polynomial.

(2) For each eigenvalue A of A, compute a basis B, for the A-eigenspace.

(3) If there are fewer than n total vectors in the union of all of the eigenspaces 5,
then the matrix is not diagonalizable.

(4) Otherwise, the n vectors vy, v,,...,V, in your eigenspace bases are linearly inde-
pendent, and A= PDP! for

A, 0 -+ 0
| | | O A«z ctt O
P=|v, v, - v, and D=| . . | -
| | o o0 .. 2

where A, is the eigenvalue for v;.

Definition. Let A be an eigenvalue of a square matrix A. The geometric multiplicity of
A is the dimension of the A-eigenspace.

Theorem. Let A be an eigenvalue of a square matrix A. Then
1 < (the geometric multiplicity of A) < (the algebraic multiplicity of A).

Corollary. Let A be an eigenvalue of a square matrix A. If the algebraic multiplicity of A is
1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form). Let A be an n xn matrix. The following
are equivalent:

(1) Ais diagonalizable.

(2) The sum of the geometric multiplicities of the eigenvalues of A equals n.

(3) The sum of the algebraic multiplicities of the eigenvalues of A equals n, and the
geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

STOCHASTIC MATRICES.

Definition. A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1.

Fact. Every stochastic matrix has eigenvalue 1.
Fact. If A # 1 is an eigenvalue of a stochastic matrix, then |A| < 1.
Definition. A square matrix A is positive if all of its entries are positive.

Definition. A steady state for a stochastic matrix A is an eigenvector w with eigenvalue
1, such that all entries are positive and sum to 1.

Perron-Frobenius Theorem. If A is a positive stochastic matrix, then it admits a unique
steady state vector w. Moreover, for any vector v, with entries summing to some number c,
the iterates v, = Av,, v, =Avy, ..., approach cw as n gets large.
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SECTION 5.5.
Review. Arithmetic in the complex numbers.

The Fundamental Theorem of Algebra. Every polynomial of degree n has exactly n com-
plex roots, counted with multiplicity.

Fact. Complex roots of real polynomials come in conjugate pairs.

Fact. If A is an eigenvalue of a real matrix with eigenvector v, then A is also an eigenvalue,
with eigenvector V.

Theorem. Let A be a 2 x 2 matrix with complex (non-real) eigenvalue A, and let v be an

eigenvector. Then
A=pCP!

| |
ReA ImA
P:(RTV Irr|1v) and C:(—Imk Rek)'

The matrix C is a composition of rotation by —arg(A) and scaling by |A|.

where

Theorem. Let A be a real n x n matrix. Suppose that for each (real or complex) eigenvalue,
the dimension of the eigenspace equals the algebraic multiplicity. Then A= PCP™!, where
P and C are as follows:

(1) C is block diagonal, where the blocks are 1 x 1 blocks containing the real eigenval-

. . e e o ) ReA ImA
ues (with their multiplicities), or 2x 2 blocks containing the matrices ( _ImA ReA )
for each complex eigenvalue A (with multiplicity).

(2) The columns of P form bases for the eigenspaces for the real eigenvectors, or come
in pairs (Rev Imv) for the complex eigenvectors.

CHAPTER 6

SECTION 6.1.
Definition.
The dot product of two vectors x,y in R" is

X1 Y1

Xy Yo | def

X-y=1 .|| . |TXan+txxy+ -+ XY
xn yn

Thinking of x, y as column vectors, this is the same as the number x” y.
Definition. The length or norm of a vector x in R" is
x|l = vx - x.

Fact. If x is a vector and c is a scalar, then ||cx|| = |c| - ||x]|.
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Definition. The distance between two points x, y in R" is

dist(x, y) = lly — x||.
Definition. A unit vector is a vector v with length ||v|| = 1.

Definition. Let x be a nonzero vector in R". The unit vector in the direction of x is the
vector x/||x|]|.

Definition. Two vectors x, y are orthogonal or perpendicular if x - y = 0.
Notation: x L y.

Fact. x Ly <= [lx—yll>=|lx|>+ Iyl
Definition. Let W be a subspace of R". Its orthogonal complement is
WLz{v inR”lv-W:OforallwinW}.

Fact. Let W be a subspace of R".
(1) Wtisalsoa subspace of R"
@ Wy =w
(3) dimW +dimW* =n
(4) If W = Span{v,,v,,...,V,,}, then
W+ = all vectors orthogonal to each vy, Vs, ...,V

s Vm

={xinR”|x-vl-=0foralli=1,2,...,m}
T

—v —
— T—
= Nul V:Z

m

Definition. The row space of an m x n matrix A is the span of the rows of A. It is denoted
RowA. Equivalently, it is the column span of A:

RowA = ColA".
It is a subspace of R".
T
—vI—
Fact. Span{v;,V,,...,V,}= = Nul 2
T

Fact. Let A be a matrix.

(1) (RowA)* = NulA and (NulA)* = RowA.
(2) (ColA)!t = NulA” and (NulAT)* = ColA.
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SECTION 6.2.

Definition. Let . = Span{u} be a line in R", and let x be in R". The orthogonal projec-
tion of x onto L is the point

. xX-u
proj, (x) = —u.
u-u

Definition. A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal.
It is orthonormal if, in addition, each vector is a unit vector.

Lemma. A set of orthogonal vectors is linearly independent. Hence it is a basis for its span.

Theorem. Let B = {uq,u,,...,u,,} be an orthogonal set, and let x be a vector in W =
Span B. Then

XU XU XUy XU,

X = E u; = u; + Uy + -+ Upy,.
o Wit Uy Uy Uy - Uy Up Uy
) X U X Uy X-u
In other words, the B-coordinates of x are ( , eens = )
ul'ul u2'u2 ul'um

SECTION 6.3.

Definition. Let W be a subspace of R", and let {u;,u,,...,u,,} be an orthogonal basis for
W. The orthogonal projection of a vector x onto W is

m
. d_ef X ui
projy (x) = u;.
- u; - u;
i=1 "t 71

Fact. Let W be a subspace of R". Every vector x can be decompsed uniquely as
X = XW + XwJ_
where X, is the closest vector to x in W, and x,. is in W=.

Theorem. Let W be a subspace of R", and let x be a vector in R". Then proj,,(x) is the
closest point to x in W. Therefore

Xy =proj,(x) and xy . = x—proj,(x).

Best Approximation Theorem. Let W be a subspace of R", and let x be a vector in R".
Then y = proj,,(x) is the closest point in W to x, in the sense that

dist(x, y’) > dist(x,y) forall y'inW.
Definition. We can think of orthogonal projection as a transformation:
proj,, : R" —R" X — proj,, (x).
Theorem. Let W be a subspace of R".

(1) proj,, is a linear transformation.

(2) For every x in W, we have proj,,(x) = x.
(3) For every x in W+, we have proj,, (x) = 0.
(4) The range of proj,, is W.
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Fact. Let W be an m-dimensional subspace of R", let proj,, : R* — W be the projection, and
let A be the matrix for proj;.

(1) A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix
with m ones and n — m gzeros on the diagonal.
(2) A2=A

SECTION 6.4.

The Gram-Schmidt Process. Let {v;,V,,...,V,,} be a basis for a subspace W of R". Define:
1) uyy=wn

. Vz * ul
(2) uy=v,— prOJSpan{ul}(Vz) =Vo———U
ul * u1
. V3 Uy V3" Uy
(3) Ug = Vg — prOJSpan{ul,uz}(VS) =V3— Uy —

1
Uy -y Uy - Uy

m—1

. Vm * ul‘
m. Uy =V, — pro.]Span{ul,uz ..... um_l}(Vm) =Vm— WU U;
i=1 it

Then {uy,u,,...,u,,} is an orthogonal basis for the same subspace W.

QR Factorization Theorem. Let A be a matrix with linearly independent columns. Then
A=QR

where Q has orthonormal columns and R is upper-triangular with positive diagonal entries.

Review. Procedure for computing Q and R given A.

SECTION 6.5.
Definition. A least squares solution to Ax = b is a vector X in R” such that
b —Ax|| < ||b —Ax|
for all x in R™.
Theorem. The least squares solutions to Ax = b are the solutions to
(ATA)x =A"b.
Theorem. If A has orthogonal columns v,,V,,...,V,, then the least squares solution to Ax =

bis
. (b-v1 b-v, b-vn)
x: — CEarY .

> 5 )
Vi*Vy VoV Vn*Vn

Theorem. Let A be an m x n matrix. The following are equivalent:

(1) Ax = b has a unique least squares solution for all b in R".
(2) The columns of A are linearly independent.
(3) ATA is invertible.

In this case, the least squares solution is (ATA)"(AT b).

Review. Examples of best fit problems using least squares.



