Supplemental problems: §1.2, §1.3

1. Is the matrix below in reduced row echelon form?

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 0 & -3 & 1 \\
0 & 0 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution.

Yes.
2. Put an augmented matrix into reduced row echelon form to solve the system

$$
\begin{gathered}
x_{1}-2 x_{2}-9 x_{3}+x_{4}=3 \\
4 x_{2}+8 x_{3}-24 x_{4}=4
\end{gathered}
$$

Write your answer in parametric form.

Solution.

$$
\left(\begin{array}{rrrr|r}
1 & -2 & -9 & 1 & 3 \\
0 & 4 & 8 & -24 & 4
\end{array}\right) \xrightarrow{R_{2}=\frac{R_{2}}{4}}\left(\begin{array}{rrrr|r}
1 & -2 & -9 & 1 & 3 \\
0 & 1 & 2 & -6 & 1
\end{array}\right) \xrightarrow{R_{1}=R_{1}+2 R_{2}}\left(\begin{array}{rrrrr}
\boxed{1} & 0 & -5 & -11 & 5 \\
0 & 1 & 2 & -6 & 1
\end{array}\right)
$$

The third and fourth columns are not pivot columns, so x_{3} and x_{4} are free variables.
Our equations are

$$
\begin{gathered}
x_{1}-5 x_{3}-11 x_{4}=5 \\
x_{2}+2 x_{3}-6 x_{4}=1 .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& x_{1}=5+5 x_{3}+11 x_{4} \\
& x_{2}=1-2 x_{3}+6 x_{4} \\
& x_{3}=x_{3} \quad(\text { any real number }) \\
& x_{4}=x_{4} \quad(\text { any real number })
\end{aligned}
$$

3. a) Row reduce the following matrices to reduced row echelon form.
b) If these are augmented matrices for a linear system (with the last column being after the $=$ sign), then which are inconsistent? Which have a unique solution?

Solution.

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
6 & 7 & 8 & 9
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{R_{3}}{R_{3}=R_{3}-6 R_{1}}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -3 & -6 & -9 \\
0 & -5 & -10 & -15
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
R_{2}=R_{2} \div-3 \\
R_{3}=R_{3}+5 R_{2}
\end{array}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & -5 & -10 & -15
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), ~\left(\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), ~ l
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it corresponds to the system of linear equations

$$
\begin{aligned}
x \quad-z & =-2 \\
y+2 z & =3 \\
0 & =0 .
\end{aligned}
$$

This system is consistent, but since z is a free variable, it does not have a unique solution.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 9 \\
5 & 7 & 9 & 1
\end{array}\right) \quad \begin{array}{l}
R_{2}=R_{2}-3 R_{1} \\
\text { mamaman }
\end{array}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
5 & 7 & 9 & 1
\end{array}\right) \\
& \underset{R_{3}=R_{3}-5 R_{1}}{R_{3}}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & -4 & -8 & -12 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \xrightarrow[r_{2}]{R_{2}=R_{2} \div-4}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & -8 & -16 & -34
\end{array}\right) \\
& \underset{\sim}{R_{3}=R_{3}+8 R_{2}}\left(\begin{array}{cccc}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & -10
\end{array}\right) \\
& R_{3}=R_{3} \div-10\left(\begin{array}{llll}
1 & 3 & 5 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& R_{1}=R_{1}-7 R_{3}\left(\begin{array}{llll}
1 & 3 & 5 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[2]{R_{2}=R_{2}-3 R_{3}}\left(\begin{array}{llll}
1 & 3 & 5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \underset{R_{1}=R_{1}-3 R_{2}}{R_{1}}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it
corresponds to the system of linear equations

$$
\begin{aligned}
x \quad-z & =0 \\
y+2 z & =0 \\
0 & =1,
\end{aligned}
$$

which is inconsistent.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & -4 & 2 & 0 \\
-8 & 12 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \quad \begin{array}{c}
R_{2}=R_{2}+3 R_{1}
\end{array}\left(\begin{array}{cccc}
3 & -4 & 2 & 0 \\
1 & 0 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \underset{\sim}{R_{1}} \longleftrightarrow R_{2}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
3 & -4 & 2 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \xrightarrow[2]{R_{2}=R_{2}-3 R_{1}}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
-6 & 8 & -1 & 0
\end{array}\right) \\
& \xrightarrow[3]{R_{3}=R_{3}+6 R_{1}}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & -4 & -4 & 0 \\
0 & 8 & 11 & 0
\end{array}\right) \\
& \xrightarrow[2]{R_{2}=R_{2} \div-4}\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 8 & 11 & 0
\end{array}\right) \\
& \xrightarrow[3]{R_{3}=R_{3}-8 R_{2}}\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 3 & 0
\end{array}\right) \\
& \xrightarrow[3]{R_{3}=R_{3} \div 3}\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \underset{R_{1}=R_{1}-2 R_{3}}{R_{1}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow[2]{R_{2}=R_{2}-R_{3}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This is the reduced row echelon form. Interpreted as an augmented matrix, it corresponds to the system of linear equations

$$
x=0 \quad y=0 \quad z=0,
$$

which has a unique solution.
4. We can use linear algebra to find a polynomial that fits given data, in the same way that we find a circle through three specified points in the Webwork.

Is there a degree-three polynomial $P(x)$ whose graph passes through the points $(-2,6),(-1,4),(1,6)$, and $(2,22)$? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.
a) If $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is a degree-three polynomial passing through the four points listed above, then $P(-2)=6, P(-1)=4, P(1)=6$, and $P(2)=22$. Write a system of four equations which we would solve to find a_{0}, a_{1}, a_{2}, and a_{3}.
b) Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?

Solution.

a) We compute

$$
\begin{array}{rlr}
P(-2)=6 & \Longrightarrow & a_{0}+a_{1} \cdot(-2)+a_{2} \cdot(-2)^{2}+a_{3} \cdot(-2)^{3}=6 \\
P(-1)=4 & \Longrightarrow & a_{0}+a_{1} \cdot(-1)+a_{2} \cdot(-1)^{2}+a_{3} \cdot(-1)^{3}=4 \\
P(1)=6 & \Longrightarrow & a_{0}+a_{1} \cdot 1+a_{2} \cdot 1^{2}+a_{3} \cdot 1^{3}=6 \\
P(2)=22 & \Longrightarrow & a_{0}+a_{1} \cdot 2+a_{2} \cdot 2^{2}+a_{3} \cdot 2^{3}=22 .
\end{array}
$$

Simplifying gives us

$$
\begin{aligned}
& a_{0}-2 a_{1}+4 a_{2}-8 a_{3}=6 \\
& a_{0}-a_{1}+a_{2}-a_{3}=4 \\
& a_{0}+a_{1}+a_{2}+a_{3}=6 \\
& a_{0}+2 a_{1}+4 a_{2}+8 a_{3}=22
\end{aligned}
$$

b) The corresponding augmented matrix is

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 4 & -8 & 6 \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 6 \\
1 & 2 & 4 & 8 & 22
\end{array}\right)
$$

We label pivots with boxes as we proceed along. First, we subtract row 1 from each of rows 2,3 , and 4 .

$$
\left(\begin{array}{cccc|c}
\begin{array}{|ccc|}
1 & -2 & 4
\end{array} & -8 & 6 \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 6 \\
1 & 2 & 4 & 8 & 22
\end{array}\right) \quad \text { min } \rightarrow\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 4 & -8 & 6 \\
0 & \boxed{1} & -3 & 7 & -2 \\
0 & 3 & -3 & 9 & 0 \\
0 & 4 & 0 & 16 & 16
\end{array}\right)
$$

We now create zeros below the second pivot by subtracting multiples of the second row, then divide by 6 to get

$$
\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 4 & -8 & 6 \\
0 & \boxed{1} & -3 & 7 & -2 \\
0 & 0 & \boxed{6} & -12 & 6 \\
0 & 0 & 12 & -12 & 24
\end{array}\right) \quad \begin{gathered}
R_{3}=R_{3} \div 6
\end{gathered}\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 4 & -8 & 6 \\
0 & \boxed{1} & -3 & 7 & -2 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 12 & -12 & 24
\end{array}\right)
$$

Now we subtract a 12 times row 3 from row 4 and divide by 12 :

At this point we can actually use back-substitution to solve: the last row says $a_{3}=1$, then plugging in $a_{3}=1$ in the third row gives us $a_{2}=3$, etc. However, for the sake of practice with reduced echelon form, let's keep row-reducing.

From right to left, we create zeros above the pivots in pivot columns by subtracting multiples of the pivot columns.

$$
\begin{aligned}
& \underset{\text { man } \rightarrow}{ }\left(\begin{array}{cccc|c}
\boxed{1} & -2 & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 3 \\
0 & 0 & 0 & \boxed{1} & 1
\end{array}\right) \\
& \underset{\text { man } \rightarrow}{ }\left(\begin{array}{cccc|c}
\boxed{1} & 0 & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 3 \\
0 & 0 & 0 & \boxed{1} & 1
\end{array}\right)
\end{aligned}
$$

So $a_{0}=2, a_{1}=0, a_{2}=3$, and $a_{3}=1$. In other words,

$$
P(x)=2+3 x^{2}+x^{3} \text {. }
$$

Therefore, there is exactly one third-degree polynomial satisfying the conditions of the problem. (You should check that, in fact, we have $P(-2)=$ $6, P(-1)=4$, etc.)

