Supplemental problems: §2.1 and §2.2

1. Consider the following vectors x, a, and b.

Can we write x as a linear combination of a and b ?
a) Formulate this question as a vector equation.
b) Give an approximate answer to the question using geometric intuition rather than attempting to solve a system of equations.

Solution.

a) $c_{1} a+c_{2} b=x$.
b) If we stretch b by a little bit, then subtract a, we will get x. This is roughly

$$
-a+\frac{3}{2} b=x
$$

(in reality, $x=-a+1.4 b$).
2. Consider the augmented matrix

$$
\left(\begin{array}{rrr|r}
2 & -2 & 2 & 0 \\
1 & -3 & -4 & -9 \\
3 & -1 & 8 & 9
\end{array}\right)
$$

Question: Does the corresponding linear system have a solution? If so, what is the solution set?
a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.
f) Find a different solution in parts (e) and (d).

Solution.

a) What are the solutions to the following vector equation?

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right)+z\left(\begin{array}{c}
2 \\
-4 \\
8
\end{array}\right)=\left(\begin{array}{c}
0 \\
-9 \\
9
\end{array}\right)
$$

b) What is the solution set of the following linear system?

$$
\begin{aligned}
2 x-2 y+2 z= & 0 \\
x-3 y-4 z= & -9 \\
3 x-y+8 z= & 9
\end{aligned}
$$

c) There exists a solution if and only if $\left(\begin{array}{c}0 \\ -9 \\ 9\end{array}\right)$ is in $\operatorname{Span}\left\{\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ -4 \\ 8\end{array}\right)\right\}$.
e) Row reducing yields

$$
\left(\begin{array}{rrr|r}
1 & 0 & 7 / 2 & 9 / 2 \\
0 & 1 & 5 / 2 & 9 / 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence z is a free variable, so the solution in parametric form is

$$
\begin{aligned}
& x=\frac{9}{2}-\frac{7}{2} z \\
& y=\frac{9}{2}-\frac{5}{2} z .
\end{aligned}
$$

Taking $z=0$ yields the solution $x=y=9 / 2$.
f) Taking $z=1$ yields the solution $x=1, y=2$.
3. Let $\quad v_{1}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) \quad v_{2}=\left(\begin{array}{c}-2 \\ -3 \\ -1\end{array}\right) \quad w=\left(\begin{array}{c}2 \\ -4 \\ 8\end{array}\right)$.

Question: Is w a linear combination of v_{1} and v_{2} ? In other words, is w in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$?
a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) Formulate this question as an augmented matrix.
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

Solution.

a) Does the following vector equation have a solution?

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
8
\end{array}\right)
$$

b) Does the following linear system have a solution?

$$
\begin{array}{r}
2 x-2 y=2 \\
x-3 y=-4 \\
3 x-y=8
\end{array}
$$

c) As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & -2 & 2 \\
1 & -3 & -4 \\
3 & -1 & 8
\end{array}\right)
$$

e) Row reducing yields

$$
\left(\begin{array}{ll|r}
1 & 0 & 7 / 2 \\
0 & 1 & 5 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

so $x=7 / 2$ and $y=5 / 2$.
4. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right), \quad b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)
$$

Is b in the span of the columns of A ? In other words, is b a linear combination of the columns of A ? Justify your answer.

Solution.

Let v_{1}, v_{2}, and v_{3} be the columns of A. We are asked to determine whether there are scalars x_{1}, x_{2}, and x_{3} so that $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=b$, which means

$$
\begin{aligned}
x_{1}+5 x_{3}= & 2 \\
-2 x_{1}+x_{2}-6 x_{3}= & -1 \\
2 x_{2}+8 x_{3}= & 6
\end{aligned}
$$

We translate the system of linear equations into an augmented matrix, and row reduce it:

$$
\left(\begin{array}{rrr|r}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{lll|l}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The right column is not a pivot column, so the system is consistent. Therefore, b is in the span of the columns of A (in other words, b is a linear combination of the columns of A).

We weren't asked to solve the equation explicitly, but if we wanted to do so, we would use the RREF of the matrix above to write

$$
x_{1}=2-5 x_{3} \quad x_{2}=3-4 x_{3} \quad x_{3}=x_{3} \quad\left(x_{3} \text { is free }\right)
$$

In fact, we can take $x_{1}=2, x_{2}=3$, and $x_{3}=0$, to write

$$
b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)=2\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+0\left(\begin{array}{c}
5 \\
-6 \\
8
\end{array}\right) .
$$

5. Consider the vector equation

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right)+z\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{l}
-5 \\
-1 \\
-2
\end{array}\right) .
$$

Question: Is there a solution? If so, what is the solution set?
a) Formulate this question as an augmented matrix.
b) Formulate this question as a system of linear equations.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

Solution.

a) As an augmented matrix:

$$
\left(\begin{array}{lll|l}
2 & -2 & 3 & -5 \\
1 & -1 & 0 & -1 \\
3 & -1 & 4 & -2
\end{array}\right)
$$

b) What is the solution set of the following linear system?

$$
\begin{aligned}
2 x-2 y+3 z & =-5 \\
x-y & =-1 \\
3 x-y+4 z & =-2
\end{aligned}
$$

c) There exists a solution if and only if $\left(\begin{array}{l}-5 \\ -1 \\ -2\end{array}\right)$ is in $\operatorname{Span}\left\{\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)\right\}$.
e) Row reducing yields

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 / 2 \\
0 & 1 & 0 & 5 / 2 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

so $x=3 / 2, y=5 / 2$, and $z=-1$.
6. Let $v_{1}=\binom{1}{k}, v_{2}=\binom{-1}{4}$, and $b=\binom{1}{h}$.
a) Find all values of h and k so that $x_{1} v_{1}+x_{2} v_{2}=b$ has infinitely many solutions.
b) Find all values of h and k so that b is not in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
c) Find all values of h and k so that there is exactly one way to express b as a linear combination of v_{1} and v_{2}.

Solution.

Each part uses the row-reduction

$$
\left(\begin{array}{rr|r}
1 & -1 & 1 \\
k & 4 & h
\end{array}\right) \xrightarrow{R_{2}=R_{2}-k R_{1}}\left(\begin{array}{rr|r}
1 & -1 & 1 \\
0 & 4+k & h-k
\end{array}\right) .
$$

a) The system ($\begin{array}{ll}v_{1} & v_{2}\end{array} b$) has infinitely many solutions if and only if the right column is not a pivot column and there is at least one free variable. This means that $4+k=0$ and $h-k=0$, so $k=-4$ and $h=k$, thus $k=-4$ and $h=-4$.
b) The right column is a pivot column when $4+k=0$ and $h-k \neq 0$. Thus $k=-4$ and $h \neq-4$
c) The system will have a unique solution when the right column is not a pivot column but both other columns are pivot columns. This is when $4+k \neq 0$, so $k \neq-4$ and h is any real number.
7. Decide if each of the following statements is true or false. If it is true, prove it; if it is false, provide a counterexample.
a) Every set of four or more vectors in \mathbf{R}^{3} will span \mathbf{R}^{3}.
b) The span of any set contains the zero vector.

Solution.

a) This is false. For instance, the vectors

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)\right\}
$$

only span the x-axis.
b) This is true. We have

$$
0=0 \cdot v_{1}+0 \cdot v_{2}+\cdots+0 \cdot v_{p} .
$$

Aside: the span of the empty set is equal to $\{0\}$, because 0 is the empty sum, i.e. the sum with no summands. Indeed, if you add the empty sum to a vector v, you get $v+$ (no other summands), which is just v; and the only vector which gives you v when you add it to v, is 0 . (If you find this argument intriguing, you might want to consider taking abstract math courses later on.)
8. Is $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ in the span of $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$? Justify your answer.

Solution.

No. We row-reduce the corresponding augmented matrix to get

$$
\left(\begin{array}{ll|l}
0 & 2 & 0 \\
1 & 3 & 1 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is inconsistent since it has a pivot in the right column.
9. Acme Widgets, Gizmos, and Doodads has two factories. Factory A makes 10 widgets, 3 gizmos, and 2 doodads every hour, and factory B makes 4 widgets, 1 gizmo, and 1 doodad every hour.
a) If factory A runs for a hours and factory B runs for b hours, how many widgets, gizmos, and doodads are produced? Express your answer as a vector equation.
b) A customer places an order for 16 widgets, 5 gizmos, and 3 doodads. Can Acme fill the order with no widgets, gizmos, or doodads left over? If so, how many hours do the factories run? If not, why not?

Solution.

a) Let w, g, and d be the number of widgets, gizmos, and doodads produced.

$$
\left(\begin{array}{l}
w \\
g \\
d
\end{array}\right)=a\left(\begin{array}{c}
10 \\
3 \\
2
\end{array}\right)+b\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right) .
$$

b) We need to solve the vector equation

$$
\left(\begin{array}{c}
16 \\
5 \\
3
\end{array}\right)=a\left(\begin{array}{c}
10 \\
3 \\
2
\end{array}\right)+b\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right) .
$$

We put it into an augmented matrix and row reduce:

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
10 & 4 & 16 \\
3 & 1 & 5 \\
2 & 1 & 3
\end{array}\right) \text { man }\left(\begin{array}{rr|r}
3 & 1 & 5 \\
2 & 1 & 3 \\
10 & 4 & 16
\end{array}\right) \text { man }\left(\begin{array}{rr|r}
1 & 0 & 2 \\
2 & 1 & 3 \\
10 & 4 & 16
\end{array}\right) \text { man }\left(\begin{array}{rr|r}
1 & 0 & 2 \\
0 & 1 & -1 \\
10 & 4 & 16
\end{array}\right) \\
& \text { mant }\left(\begin{array}{rr|r}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

These equations are consistent, but they tell us that factory B would have to run for -1 hours! Therefore it can't be done.
10. The diagram below represents traffic in a city.

a) Write a system of three linear equations whose solution would give the values of x_{1}, x_{2}, and x_{3}. Do not solve it.
b) Write the system of equations as a vector equation. Do not solve it.

Solution.

a) The number of cars leaving an intersection must equal the number of cars entering.

$$
\begin{gathered}
x_{3}+70=x_{1}+90 \\
x_{1}+x_{2}=160 \\
x_{2}+x_{3}=180 .
\end{gathered}
$$

Or:

$$
\begin{aligned}
-x_{1}+x_{3} & =20 \\
x_{1}+x_{2} & =160 \\
x_{2}+x_{3} & =180
\end{aligned}
$$

b) $x_{1}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)+x_{2}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+x_{3}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}20 \\ 160 \\ 180\end{array}\right)$.

