Math 1553 Worksheet §3.4

Solutions

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) A^{2}
e) $A+I_{5}$
f) $B^{T} I_{3}$

Solution.

Only (c) and (f).
a) $A-B$ is nonsense. In order for $A-B$ to be defined, A and B need to have the same number or rows and same number of columns.
b) $A B$ is undefined since the number of columns of A does not equal the number of rows of B.
c) A^{T} is 5×3 and B is 3×2, so $A^{T} B$ is a 5×2 matrix.
d) A^{2} is nonsense (can't multiply 3×5 with another 3×5).
e) A is 3×5 and I_{5} is 5×5. Therefore, $A+I_{5}$ is not defined.
f) B^{T} is 2×3 and I_{3} is 3×3. Therefore, $B^{T} I_{3}$ is defined (in fact, it is equal to B^{T}).
2. Suppose A is an $m \times n$ matrix and B is an $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
a) Suppose x is in \mathbf{R}^{m}. Then $A B x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
b) If $m>n$, then columns of $A B$ could be linearly independent, dependent
c) If $m>n$, then columns of $B A$ could be linearly independent, dependent
d) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent

Solution.

Recall, $A B$ can be computed as A multiplying every column of B. That is $A B=$ $\left(\begin{array}{lll}A b_{1} & A b_{2} & \cdots A b_{m}\end{array}\right)$ where $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$.
a) $\operatorname{Col}(A)$. Note $B x$ is a vector in \mathbf{R}^{n} and $A B x=A(B x)$ is multiplying A with a vector in \mathbf{R}^{n}. Therefore, $A B x$ is a linear combination of the columns of A, so $A B x$ must be in $\operatorname{Col}(A)$.
b) dependent. The fact $m>n$ means A has at most n pivots, so $\operatorname{dim}(\operatorname{Col}(A)) \leq$ n. From part (a) we know that every vector of the form $A B x$ is in $\operatorname{Col}(A)$, which has dimension at most n. This means $A B$ can have at most n pivots. But $A B$ is an $m \times m$ matrix and $m>n$, so the columns of $A B$ must be dependent.
c) independent, dependent. Both are possible. Since $m>n$, we know that each of A and B can have at most n pivots. The product $B A$ is $n \times n$, so it is possible (though not guaranteed) for $B A$ to have a pivot in each column. For example,

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \text { then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \text { then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

d) dependent. Let v be a nontrivial solution to $A x=0$. Then v is also a nontrivial solution of $B A x=0$ since

$$
B A v=B(A v)=B(0)=0
$$

That means $B A x=0$ has a non-trivial solution, so the columns of $B A$ must be linearly dependent.
In this problem, we made some observations, such as the following.

- $\operatorname{Col}(A B)$ is a subset of $\operatorname{Col}(A)$.
- $\operatorname{Nul}(A)$ is a subset of $\operatorname{Nul}(B A)$ since if $A x=0$ then $B A x=B(A x)=B(0)=0$.

3. True or false. Answer true if the statement is always true. Otherwise, answer false.
a) If A, B, and C are nonzero 2×2 matrices satisfying $B A=C A$, then $B=C$.
b) Suppose A is an 4×3 matrix whose associated transformation $T(x)=A x$ is not one-to-one. Then there must be a 3×3 matrix B which is not the zero matrix and satisfies $A B=0$.

Solution.

a) False. This question was essentially taken from the "Warnings" slide of the 3.4 PDF slides.

$$
\begin{aligned}
& \text { Take } A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {, and } C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \text { Then } B A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { and } \\
& B C=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {, but } B \neq C .
\end{aligned}
$$

b) True. If T is not one-to-one then there is a non-zero vector v in \mathbf{R}^{3} so that

$$
A v=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

The 3×3 matrix $B=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v & v & v \\ \mid & \mid & \mid\end{array}\right)$ satisfies

$$
A B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
A v & A v & A v \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

4. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the z-coordinate
$U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by 90°
$V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the x-direction by a factor of 2.
Let A, B, C be the matrices for T, U, V, respectively.
a) Write A, B, and C.
b) Compute the matrix for $U \circ V \circ T$.
c) Describe U^{-1} and V^{-1}, and compute their matrices.

If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $\left(U^{-1} \circ U\right)\binom{x}{y}=$ $\binom{x}{y}$. Now, do the same for V.

Solution.

a) We plug in the unit coordinate vectors:

$$
\left.\begin{array}{rl}
T\left(e_{1}\right)=\binom{1}{0} \quad T\left(e_{2}\right)=\binom{0}{1} & T\left(e_{3}\right)=\binom{0}{0}
\end{array}\right] \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

b) By associativity, we can put the parentheses wherever we wish in computing the product $B C A$ (though we cannot change the order of B, C, and $A!$):

$$
B C A=B(C A)=(B C) A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-2 & 0 & 0
\end{array}\right) .
$$

c) Intuitively, if we wish to "undo" U, we can imagine that $\binom{x}{y}$. To do this, we need to rotate it 90° counterclockwise. Therefore, U^{-1} is counterclockwise rotation by 90°.

Similarly, to undo the transformation V that scales the x-direction by 2 , we need to scale the x-direction by $1 / 2$, so V^{-1} scales the x-direction by a factor of $1 / 2$.

Their matrices are, respectively,

$$
B^{-1}=\frac{1}{0 \cdot 0-(-1) \cdot 1}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and

$$
C^{-1}=\frac{1}{2 \cdot 1-0 \cdot 0}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

