Math 1553 Worksheet §2.3, S2.4 Solutions

- **1.** True or false. If the statement is *always* true, answer True. Otherwise, answer False. In parts (a) and (b), *A* is an $m \times n$ matrix and *b* is a vector in \mathbb{R}^m .
 - a) If b is in the span of the columns of A, then the matrix equation Ax = b is consistent.
 - **b)** If Ax = b is inconsistent, then A does not have a pivot in every column.
 - c) If A is a 4×3 matrix, then the equation Ax = b is inconsistent for some b in \mathbb{R}^4 .

Solution.

a) True. Let the columns of *A* be v_1, \dots, v_n . Since *b* in Span{ v_1, \dots, v_n }, this means *b* can be written as a linear combinations of these column vectors, so

$$x_1v_1 + \dots + x_nv_n = b$$

for some scalars x_1, \ldots, x_n . Therefore, Ax = b where $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

b) False, for instance consider

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

This is an inconsistent system even though *A* has a pivot in each column.

c) True. Any 4×3 matrix *A* will have at most 3 pivots, so *A* cannot have a pivot in every row. For example, consider the augmented matrix $(A \mid b)$ below.

(1)	0	0	0)
0	1	0	0
0	0	1	0
(0	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

2. Let

$$A = \begin{pmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$$

Solve the matrix equation Ax = b and write your answer in parametric form.

Solution.

We translate the matrix equation into an augmented matrix, and row reduce it:

(1	0	5	2)		(1)			2	
-	-2	1	-6	-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	1	4	3	
ſ	0	2	8	6)		0/	0	0	0)	

The right column is not a pivot column, so the system is consistent.

The RREF of the augmented matrix gives

$$x_1 = 2 - 5x_3$$
 $x_2 = 3 - 4x_3$ $x_3 = x_3$ (x_3 is free).

If we wanted to write just one specific solution, we could take $x_3 = 0$ and that would give us $x_1 = 2, x_2 = 3$:

$$b = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 5 \\ -6 \\ 8 \end{pmatrix}.$$

3. Find the set of solutions to $x_1 - 3x_2 + 5x_3 = 0$. Next, find the set of solutions to $x_1 - 3x_2 + 5x_3 = 3$. In each case, write your solution in parametric vector form. How do the solution sets compare geometrically?

Solution.

The homogeneous system $x_1 - 3x_2 + 5x_3 = 0$ corresponds to the augmented matrix $\begin{pmatrix} 1 & -3 & 5 & | & 0 \end{pmatrix}$, which has two free variables x_2 and x_3 .

$$x_1 = 3x_2 - 5x_3$$
 $x_2 = x_2$ (free) $x_3 = x_3$ (free).

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3x_2 - 5x_3 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3x_2 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -5x_3 \\ 0 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{bmatrix}.$$

The solution set for $x_1 - 3x_2 + 5x_3 = 0$ is the plane spanned by $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}.$

The nonhomogeneous system $x_1 - 3x_2 + 5x_3 = 3$ corresponds to the augmented matrix $\begin{pmatrix} 1 & -3 & 5 & | & 3 \end{pmatrix}$ which has two free variables x_2 and x_3 .

$$x_1 = 3 + 3x_2 - 5x_3 \qquad x_2 = x_2 \qquad x_3 = x_3$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3+3x_2-5x_3 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 3x_2 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -5x_3 \\ 0 \\ x_3 \end{pmatrix} = \boxed{ \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix} }.$$

This solution set (red) is the *translation* by $\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ of the plane (green) spanned by $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}$.

Here is the link to a 3D picture you can play with https://www.geogebra.org/calculator/j57ttsnb

4. Let $A = \begin{pmatrix} 1 & -1 \\ 4 & -4 \end{pmatrix}$. Draw the span of the columns of *A*, and draw the set of solutions to Ax = 0. Clearly label each.

Solution.

The blue line is the span of columns of *A*: Span $\left\{ \begin{pmatrix} 1 \\ 4 \end{pmatrix} \right\}$. If you draw the two column vectors, you will see they both fall on the line $x_2 = 4x_1$.

The red dashed line is the span of solutions of Ax = 0: Span $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. To see this is the case, you can row reduce the augmented matrix to RREF, which is $\begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$. That implies the solution set is the line $x_2 = x_1$.

5. Write an augmented matrix corresponding to a system of two linear equations in the three variables x_1, x_2, x_3 , so that the solution set is the span of $\begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$.

Solution.

We are asked to come up with a system whose solution set is the prescribed span, rather than being handed a system and discovering its solution set.

Since the span of any vector includes the origin, the zero vector is a solution, so the system is homogeneous.

Note that the span of
$$\begin{pmatrix} -4\\1\\0 \end{pmatrix}$$
 is all vectors of the form $t \begin{pmatrix} -4\\1\\0 \end{pmatrix}$ where t is real.
It consists of all $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ so that $x_1 = -4x_2$, $x_2 = x_2$, $x_3 = 0$.
The equation $x_1 = -4x_2$ gives $x_1 + 4x_2 = 0$, so one line in the matrix can $\begin{pmatrix} 1 & 4 & 0 & 0 \end{pmatrix}$.

The equation $x_3 = 0$ translates to $\begin{pmatrix} 0 & 0 & 1 & | & 0 \end{pmatrix}$. Note that this leaves x_2 free, as desired.

This gives us the augmented matrix

(Multiple examples are possible. For example do an arbitrary row operation on the above matrix, that will also work.)

be