Math 1553 Worksheet §2.3, S2.4

Solutions

1. True or false. If the statement is always true, answer True. Otherwise, answer False. In parts (a) and (b), A is an $m \times n$ matrix and b is a vector in \mathbf{R}^{m}.
a) If b is in the span of the columns of A, then the matrix equation $A x=b$ is consistent.
b) If $A x=b$ is inconsistent, then A does not have a pivot in every column.
c) If A is a 4×3 matrix, then the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{4}.

Solution.

a) True. Let the columns of A be v_{1}, \cdots, v_{n}. Since b in $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}$, this means b can be written as a linear combinations of these column vectors, so

$$
x_{1} v_{1}+\cdots+x_{n} v_{n}=b
$$

for some scalars x_{1}, \ldots, x_{n}. Therefore, $A x=b$ where $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$.
b) False, for instance consider

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

This is an inconsistent system even though A has a pivot in each column.
c) True. Any 4×3 matrix A will have at most 3 pivots, so A cannot have a pivot in every row. For example, consider the augmented matrix $(A \mid b)$ below.

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right), \quad b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right) .
$$

Solve the matrix equation $A x=b$ and write your answer in parametric form.

Solution.

We translate the matrix equation into an augmented matrix, and row reduce it:

$$
\left(\begin{array}{rrr|r}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{array}\right) \quad \stackrel{\text { rref }}{\text { man }}\left(\begin{array}{lll|l}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The right column is not a pivot column, so the system is consistent.
The RREF of the augmented matrix gives

$$
x_{1}=2-5 x_{3} \quad x_{2}=3-4 x_{3} \quad x_{3}=x_{3} \quad\left(x_{3} \text { is free }\right) .
$$

If we wanted to write just one specific solution, we could take $x_{3}=0$ and that would give us $x_{1}=2, x_{2}=3$:

$$
b=\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)=2\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+0\left(\begin{array}{c}
5 \\
-6 \\
8
\end{array}\right) .
$$

3. Find the set of solutions to $x_{1}-3 x_{2}+5 x_{3}=0$. Next, find the set of solutions to $x_{1}-3 x_{2}+5 x_{3}=3$. In each case, write your solution in parametric vector form. How do the solution sets compare geometrically?

Solution.

The homogeneous system $x_{1}-3 x_{2}+5 x_{3}=0$ corresponds to the augmented matrix $\left(\begin{array}{lll|l}1 & -3 & 5 & 0\end{array}\right)$, which has two free variables x_{2} and x_{3}.

$$
\begin{gathered}
x_{1}=3 x_{2}-5 x_{3} \quad x_{2}=x_{2} \text { (free) } \quad x_{3}=x_{3} \text { (free). } \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{2} \\
x_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

The solution set for $x_{1}-3 x_{2}+5 x_{3}=0$ is the plane spanned by $\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$.

The nonhomogeneous system $x_{1}-3 x_{2}+5 x_{3}=3$ corresponds to the augmented matrix $\left(\begin{array}{lll|}1 & -3 & 5\end{array}\right)$ which has two free variables x_{2} and x_{3}.

$$
\begin{gathered}
x_{1}=3+3 x_{2}-5 x_{3} \quad x_{2}=x_{2} \quad x_{3}=x_{3} . \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3+3 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
3 x_{2} \\
x_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

This solution set (red) is the translation by $\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ of the plane (green) spanned by $\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$.

Here is the link to a 3D picture you can play with https://www. geogebra.org/ calculator/j57ttsnb
4. Let $A=\left(\begin{array}{ll}1 & -1 \\ 4 & -4\end{array}\right)$. Draw the span of the columns of A, and draw the set of solutions to $A x=0$. Clearly label each.

Solution.

The blue line is the span of columns of A : Span $\left\{\binom{1}{4}\right\}$. If you draw the two column vectors, you will see they both fall on the line $x_{2}=4 x_{1}$.

The red dashed line is the span of solutions of $A x=0: \operatorname{Span}\left\{\binom{1}{1}\right\}$. To see this is the case, you can row reduce the augmented matrix to RREF, which is $\left(\begin{array}{rr|r}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$. That implies the solution set is the line $x_{2}=x_{1}$.
5. Write an augmented matrix corresponding to a system of two linear equations in the three variables x_{1}, x_{2}, x_{3}, so that the solution set is the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$.

Solution.

We are asked to come up with a system whose solution set is the prescribed span, rather than being handed a system and discovering its solution set.

Since the span of any vector includes the origin, the zero vector is a solution, so the system is homogeneous.

Note that the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ is all vectors of the form $t\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ where t is real.
It consists of all $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ so that $x_{1}=-4 x_{2}, x_{2}=x_{2}, x_{3}=0$.
The equation $x_{1}=-4 x_{2}$ gives $x_{1}+4 x_{2}=0$, so one line in the matrix can be $\left(\begin{array}{lll|l}1 & 4 & 0 & 0\end{array}\right)$.
The equation $x_{3}=0$ translates to $\left(\begin{array}{lll}0 & 0 & 1 \mid 0\end{array}\right)$. Note that this leaves x_{2} free, as desired.

This gives us the augmented matrix

$$
\left.\begin{array}{|lll|l|}
\hline\left(\left.\begin{array}{lll}
1 & 4 & 0
\end{array} \right\rvert\,\right. \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

(Multiple examples are possible. For example do an arbitrary row operation on the above matrix, that will also work.)

