Supplemental problems: §3.4

1. Consider $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+2 y \\
2 x+y \\
x-y
\end{array}\right)
$$

and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by first projecting onto the $x y$-plane (forgetting the z coordinate), then rotating counterclockwise by 90°.
a) Compute the standard matrices A and B for T and U, respectively.
b) Compute the standard matrices for $T \circ U$ and $U \circ T$.
c) Circle all that apply:
$T \circ U$ is: one-to-one onto
$U \circ T$ is: one-to-one onto

Solution.

a) We plug in the unit coordinate vectors to get

$$
A=\left(\begin{array}{cc}
\mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
U\left(e_{1}\right) & U\left(e_{2}\right) & U\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

b) The standard matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & -2 & 0 \\
-1 & -1 & 0
\end{array}\right)
$$

The standard matrix for $U \circ T$ is

$$
B A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
1 & 2
\end{array}\right)
$$

c) Looking at the matrices, we see that $T \circ U$ is not one-to-one or onto, and that $U \circ T$ is one-to-one and onto.
2. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the linear transformation which projects onto the $y z$-plane and then forgets the x-coordinate, and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

respectively.
a) Which composition makes sense? (Circle one.)

$$
U \circ T \quad T \circ U
$$

b) Find the standard matrix for the transformation that you circled in (b).

Solution.

a) Only $U \circ T$ makes sense, as the codomain of T is \mathbf{R}^{2}, which is the domain of U.
b) The standard matrix for $U \circ T$ is

$$
B A=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & 1 & -\sqrt{3} \\
0 & \sqrt{3} & 1
\end{array}\right) .
$$

3. Find all matrices B that satisfy

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
-3 & -11 \\
1 & 17
\end{array}\right)
$$

Solution.

B must have two rows and two columns for the above to compute, so $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We calculate

$$
\left(\begin{array}{cc}
1 & -3 \\
-3 & 5
\end{array}\right) B=\left(\begin{array}{cc}
a-3 c & b-3 d \\
-3 a+5 c & -3 b+5 d
\end{array}\right)
$$

Setting this equal to $\left(\begin{array}{cc}-3 & -11 \\ 1 & 17\end{array}\right)$ gives us

$$
\left.\begin{array}{r}
a-3 c=-3 \\
-3 a+5 c=1
\end{array}\right\} \quad \text { solve } \quad a=3, c=2
$$

and

$$
\left.\begin{array}{rr}
b-3 d & =-11 \\
-3 b+5 d & =17
\end{array}\right\} \quad \text { solve } \quad b=1, d=4
$$

Therefore, $B=\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$.
4. Let T and U be the (linear) transformations below:
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}-x_{1}, x_{2}+4 x_{3}, x_{1}, 2 x_{2}+x_{3}\right) \quad U\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-2 x_{2}, x_{1}\right)$.
a) Which compositions makes sense (circle all that apply)? $U \circ T \quad T \circ U$
b) Compute the standard matrix for T and for U.
c) Compute the standard matrix for each composition that you circled in (a).

Solution.

a) $U \circ T$ makes sense, but $T \circ U$ does not.
b) Let A be the standard matrix for T and B be the standard matrix for U.

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

c) The matrix for $U \circ T$ is

$$
B A=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -2 & -7 \\
-1 & 0 & 1
\end{array}\right)
$$

5. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A and B are matrices and the products $A B$ and $B A$ are both defined, then A and B must be square matrices with the same number of rows and columns.
b) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are onto linear transformations. Then $U \circ T$ must be onto.
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are one-to-one linear transformations. Then $U \circ T$ is one-to-one.

Solution.

a) False. For example, if A is any 2×3 matrix and B is any 3×2 matrix, then $A B$ and $B A$ are both defined.
b) True. Let A and B be the standard matrices for T and U, so $T(x)=A x$ and $U(y)=B y$, where both A and B have a pivot in each row since their corresponding transformations are onto.

Let z be any vector in \mathbf{R}^{p}. We show that there is some x so that $(U \circ T)(x)=z$.
Since the column span of B is \mathbf{R}^{p}, there is some vector y in \mathbf{R}^{m} so that $B y=z$. Since the column span of A is \mathbf{R}^{m}, there is some vector x in \mathbf{R}^{n} so that $A x=y$. Therefore

$$
(U \circ T)(x)=B(A x)=B y=z .
$$

Note: it is also true in general that the composition of two onto transformations is also onto, regardless of whether the transformations are linear.
c) True. Recall that a transformation S is one-to-one if $S(x)=S(y)$ implies $x=y$ (the same outputs implies the same inputs). Suppose that $U \circ T(x)=U \circ T(y)$. Then $U(T(x))=U(T(y))$, so since U is one-to-one, we have $T(x)=T(y)$. Since T is one-to-one, this implies $x=y$. Therefore, $U \circ T$ is one-to-one. Note that this argument does not use the assumption that U and T are linear transformations.

Alternative: We'll show that $U \circ T(x)=0$ has only the trivial solution. Let A be the matrix for U and B be the matrix for T, and suppose x is a vector
satisfying $(U \circ T)(x)=0$. In terms of matrix multiplication, this is equivalent to $A B x=0$. Since U is one-to-one, the only solution to $A v=0$ is $v=0$, so $A(B x)=0 \Longrightarrow B x=0$.

Since T is one-to-one, we know that $B x=0 \Longrightarrow x=0$. Therefore, the equation $(U \circ T)(x)=0$ has only the trivial solution.
6. In each case, use geometric intuition to either give an example of a matrix with the desired properties or explain why no such matrix exists.
a) A 3×3 matrix P, which is not the identity matrix or the zero matrix, and satisfies $P^{2}=P$.
b) A 2×2 matrix A which is not the identity matrix and satisfies $A^{2}=I$.
c) A 2×2 matrix A satisfying $A^{3}=-I$.

Solution.

a) Take P to be the natural projection onto the $x y$-plane in \mathbf{R}^{3}, so $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. If you apply P to a vector then the result will be within the $x y$-plane of \mathbf{R}^{3}, so applying P a second time won't change anything, hence $P^{2}=P$.
b) Take A to be matrix for reflection across the line $y=x$, so $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since A swaps the x and y coordinates, repeating A will swap them back to their original positions, so $A A=I$.
c) Note that $-I$ is the matrix that rotates counterclockwise by 180°, so we need a transformation that will give you counterclockwise rotation by 180° if you do it three times. One such matrix is the rotation matrix for 60° counterclockwise,

$$
A=\left(\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

Another such matrix is $A=-I$.

