Supplemental problems: §3.5-3.6

1. a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of $A B$ is \qquad .
b) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
c) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, does $A x=0$ necessarily have a unique solution? Justify your answer.

Solution.

a) $(A B)^{-1}=B^{-1} A^{-1}$.
b) Yes. The transformation $x \rightarrow Z x$ is one-to-one since the columns of Z are linearly independent. Thus Z has a pivot in all n columns, so Z has n pivots. Since Z also has n rows, this means that Z has a pivot in every row, so $x \rightarrow Z x$ is onto. Therefore, Z is invertible.

Alternatively, since Z is an $n \times n$ matrix whose columns are linearly independent, the Invertible Matrix Theorem says that Z is invertible.
c) Yes. Since $A B$ is an $n \times n$ matrix and $A B x=0$ has a unique solution, the Invertible Matrix Theorem says that $A B$ is invertible. Note A is invertible and its inverse is $B(A B)^{-1}$, since these are square matrices and

$$
A\left(B(A B)^{-1}\right)=A B(A B)^{-1}=I_{n}
$$

Since A is invertible, $A x=0$ has a unique solution by the Invertible Matrix Theorem.
2. Suppose A is an invertible matrix and

$$
A^{-1} e_{1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right), \quad A^{-1} e_{2}=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right), \quad A^{-1} e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Find A.

Solution.

The columns of A^{-1} are

$$
\left(\begin{array}{lll}
A^{-1} e_{1} & A^{-1} e_{2} & A^{-1} e_{3}
\end{array}\right) \quad \text { so } \quad A=\left(\begin{array}{lll}
4 & 3 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

To get A we find $\left(A^{-1}\right)^{-1}$. Row-reducing $\left(A^{-1} \mid I\right)$ eventually gives us

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \frac{2}{5} & -\frac{3}{5} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right), \quad \text { so } \quad A=\left(\begin{array}{ccc}
\frac{2}{5} & -\frac{3}{5} & 0 \\
-\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

