Supplemental problems: §3.5-3.6

1. a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of $A B$ is \qquad .
b) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
c) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, does $A x=0$ necessarily have a unique solution? Justify your answer.
2. Suppose A is an invertible matrix and

$$
A^{-1} e_{1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right), \quad A^{-1} e_{2}=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right), \quad A^{-1} e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Find A.

