Math 1553 Reading Day Fall 2023

(!) This is a preview of the published version of the quiz

Started: Nov 4 at 11:03am

Quiz Instructions

Question 1
 1 pts

If $\{u, v, w\}$ is a set of linearly dependent vectors, then w must be a linear combination of u and v.True

O False

Question 2

Find the value of k that makes the following vectors linearly dependent:

$$
\left(\begin{array}{c}
-3 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{c}
3 \\
-3 \\
k
\end{array}\right), \quad\left(\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right)
$$

\square

Question 3

If $\{u, v\}$ is a basis for a subspace W, then $\{u-v, u+v\}$ is also a basis for W.True
False

Question 4

Which of the following are subspaces of \mathbb{R}^{4} ?
(1) The set $W=\left\{\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbb{R}^{4}: 2 x-y-z=0\right\}$.
(2) The set of solutions to the equation $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -1\end{array}\right) x=\binom{1}{0}$.both are subspacesneither is a subspace(2) is a subspace but (1) is not a subspace(1) is a subspace but (2) is not a subspace

Question 5

Let W be the set of vectors $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ in \mathbb{R}^{3} with $a b c=0$. Then W is closed under addition, meaning that if v and w are in W, then $v+w$ is in W.TrueFalse

Match the transformations given below with their corresponding 2×2 matrix.
A. $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
B. $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
C. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
D. $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
E. $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

Counter-clockwise rotation by 90 degrees
[Choose] V

Reflection about the line $y=x$

Clockwise rotation by 90 degrees

Reflection across the x -axis

Reflection across the y-axis

Question 7

Find the value of k so that the matrix transformation for the following matrix is not onto.
\square

Question 8

Find the nonzero value of k that makes the following matrix not invertible.
$\left(\begin{array}{ccc}1 & -1 & 0 \\ k & k^{2} & 0 \\ -1 & 1 & 5\end{array}\right)$
Enter an integer as your answer. Note that 0 is not the correct answer, since the question asks for a nonzero value of k.
\square

Question 9

Match the following definitions with the corresponding term describing a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Each definition should be used exactly once.
A. For each y in \mathbb{R}^{n} there is at most one x in \mathbb{R}^{m} so that $T(x)=y$.
B. For each y in \mathbb{R}^{n} there is at least one x in \mathbb{R}^{m} so that $T(x)=y$.
C. For each y in \mathbb{R}^{n} there is exactly one x in \mathbb{R}^{m} so that $T(x)=y$.
D. For each x in \mathbb{R}^{m} there is exactly one y in \mathbb{R}^{n} so that $T(x)=y$.

T is a transformation

T is one-to-one
[Choose] V

T is onto

T is one-to-one and onto
[Choose] V

Question 10

Suppose A is a 4×6 matrix. Then the dimension of the null space of A is at most 2.TrueFalse

Question 11

1 pts

Complete the entries of the matrix A so that $\operatorname{Col}(A)=\operatorname{Span}\left\{\binom{1}{2}\right\}$ and
$\operatorname{Nul}(A)=\operatorname{Span}\left\{\binom{1}{1}\right\}$.
$A=\left(\begin{array}{ll}r & 1 \\ s & 2\end{array}\right)$, where $r=$ \square and $s=$ \square

Suppose $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{9}$ is a linear transformation with standard matrix A, and suppose that the range of T has a basis consisting of 3 vectors. What is the
dimension of the null space of A ?
\square

Question 13

Define a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by $T(x, y, z)=(0, x-y, y-x, z)$.
Which one of the following statements is true?
T is onto but not one-to-one.T is one-to-one but not onto.T is one-to-one and onto.T is neither one-to-one nor onto.

Question 14

Suppose that A is a 7×5 matrix, and the null space of A is a line. Say that T is the matrix transformation $T(v)=A v$. Which of the following statements must be true about the range of T ?

It is a 4-dimensional subspace of \mathbb{R}^{5}It is a 6 -dimensional subspace of \mathbb{R}^{7}
It is a 4-dimensional subspace of \mathbb{R}^{7}
It is a 6-dimensional subspace of \mathbb{R}^{5}

Say that $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ are linear transformations. Which of the following must be true about $T \circ S$?It is one-to-oneIt is not one-to-oneIt is ontoThe composition is not definedIt is not onto

Question 16

Suppose that A is an invertible $n \times n$ matrix. Then $A+A$ must be invertible.TrueFalse

Question 17

1 pts

Suppose A is a 3×3 matrix and the equation $A x=\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)$ has exactly one solution.

Then A must be invertible.TrueFalse

Suppose that A and B are $n \times n$ matrices and $A B$ is not invertible.
Which one of of the following statements must be true?None of theseB is not invertibleAt least one of the matrices A or B is not invertibleA is not invertible

Question 19

Suppose A and B are 3×3 matrices, with $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=-6$.
Find $\operatorname{det}\left(2 A^{-1} B\right)$.
\square

Question 20

Let A be the 3×3 matrix satisfying $A e_{1}=e_{3}, A e_{2}=e_{2}$, and $A e_{3}=2 e_{1}$ (recall that we use e_{1}, e_{2}, and e_{3} to denote the standard basis vectors for \mathbb{R}^{3}).

Find $\operatorname{det}(A)$.
\square

Suppose A is a square matrix and $\lambda=-1$ is an eigenvalue of A.
Which one of the following statements must be true?

O $\operatorname{Nul}(A+I)=\{0\}$The columns of $A+I$ are linearly independent.A is invertible.For some nonzero x, the vectors $A x$ and x are linearly dependent.The equation $\backslash(A x=x \|)$ has only the trivial solution.

Question 22

Suppose A is a 4×4 matrix with characteristic polynomial $-(1-\lambda)^{2}(5-\lambda) \lambda$. What is the rank of A ?
\square

Question 23

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that reflects across the line $x_{2}=2 x_{1}$.
Find the value of k so that $A\binom{2}{k}=\binom{2}{k}$.
\square

Find the value of k such that the matrix $\left(\begin{array}{cc}1 & k \\ 1 & 3\end{array}\right)$ has one real eigenvalue of algebraic multiplicity 2 . Enter an integer value below.
\square

Question 25

Suppose that A is a 5×5 matrix with characteristic polynomial
$(1-\lambda)^{3}(2-\lambda)(3-\lambda)$ and also that A is diagonalizable. What is the dimension of the 1 -eigenspace of A ?
\square

Question 26

Find the value of t such that 3 is an eigenvalue of $\left(\begin{array}{ccc}1 & t & 3 \\ 1 & 1 & 1 \\ 3 & 0 & 3\end{array}\right)$. Enter an integer answer below.
\square

Say that A is a 2×2 matrix with characteristic polynomial $(1-\lambda)(2-\lambda)$. What is the characteristic polynomial of A^{2} ?
$\bigcirc(1-\lambda)^{2}(2-\lambda)^{2}$
$\bigcirc\left(1-\lambda^{2}\right)\left(2-\lambda^{2}\right)$
$\bigcirc\left(1-\lambda^{2}\right)\left(4-\lambda^{2}\right)$
$\bigcirc(1-\lambda)(2-\lambda)$
$\bigcirc(1-\lambda)(4-\lambda)$

Question 28

Suppose that a vector x is an eigenvector of A with eigenvalue 3 and that x is also an eigenvector of B with eigenvalue 4 . Which of the following is true about the matrix $2 A-B$ and x :
x is an eigenvector of $2 A-B$ with eigenvalue 3
x is an eigenvector of $2 A-B$ with eigenvalue 2
x is an eigenvector of $2 A-B$ with eigenvalue 1x is an eigenvector of $2 A-B$ with eigenvalue 4None of these

Question 29

Suppose that A is a 4×4 matrix with eigenvalues 0,1 , and 2 , where the eigenvalue 1 has algebraic multiplicity two.

Which of the following must be true?
(1) A is not diagonalizable
(2) A is not invertibleBoth (1) and (2) must be trueNeither statement is necessarily true(2) must be true but (1) might not be true(1) must be true but (2) might not be true

Question 30

1 pts

Suppose A is a 5×5 matrix whose entries are real numbers. Then A must have at least one real eigenvalue.

TrueFalse

Question 31

Suppose A is a positive stochastic matrix and $A\binom{3 / 5}{2 / 5}=\binom{3 / 5}{2 / 5}$. Let $v=\binom{5}{95}$.

As n gets very large, $A^{n} v$ approaches the vector $\binom{r}{s}$, where:
$r=$ \square and $s=\square$.

Suppose that A is a 4×4 matrix of rank 2 . Which one of the following statements must be true?A cannot have four distinct eigenvaluesA is not diagonalizablenone of theseA is diagonalizableA must have four distinct eigenvalues

Question 33

Suppose A is a 2×2 matrix whose entries are real numbers, and suppose A has eigenvalue $1+i$ with corresponding eigenvector $\binom{2}{1+i}$.

Which of the following must be true?
A must have eigenvalue $1-i$ with corresponding eigenvector $\binom{2}{1+i}$
A must have eigenvalue $1-i$ with corresponding eigenvector $\binom{2}{1-i}$
None of theseA must have eigenvalue $1+i$ with corresponding eigenvector $\binom{2}{1-i}$

Question 34

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates the plane clockwise by 45 degrees, and let A be the standard matrix for T.

Which one of the following statements is true?
A has two distinct real eigenvalues
A has one complex eigenvalue with algebraic multiplicity two
A has one real eigenvalue with algebraic multiplicity two
A has two distinct complex eigenvalues.

Question 35

Suppose u and v are orthogonal unit vectors (to say that a vector is a unit vector means that it has length 1). Find the dot product
$(3 u-8 v) \cdot 4 u$.
\square

Question 36

Find the value of k that makes the following pair of vectors orthogonal.

$$
\left(\begin{array}{c}
2 \\
k \\
1
\end{array}\right) \text { and }\left(\begin{array}{r}
k \\
1 \\
-6
\end{array}\right)
$$

Your answer should be an integer.
\square

Question 37

1 pts

If W is a subspace of \mathbb{R}^{100} and v is a vector in W^{\perp} then the orthogonal projection of v to W must be the 0 vector.True

False

Question 38

Suppose W is a subspace of \mathbb{R}^{n}. If x is a vector and x_{W} is the orthogonal projection of x onto W, then $x \cdot x_{W}$ must be 0 .TrueFalse

Question 39

1 pts

Suppose that A is a 3×3 invertible matrix. What is the dot product between the second row of A and third column of A^{-1} equal to?

○ 1Not Enough Information is Given
○ 2

- -2

○-1

Find the orthogonal projection of $\binom{0}{1}$ onto $\operatorname{Span}\left\{\binom{1}{2}\right\}$.

The orthogonal projection is $\binom{a}{b}$, where: $a=\square$ and $b=$
\qquad .

Enter integers or fractions as your entries.

Question 41

1 pts

Compute the orthogonal projection of the vector $\left(\begin{array}{l}6 \\ 5 \\ 4\end{array}\right)$ to the plane spanned by the vectors $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. What is the first coordinate of the projection? Your answer should be an integer.
\square

Question 42

Suppose B is the standard matrix for the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of orthogonal projection onto the subspace $W=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbb{R}^{3} \mid x+y+2 z=0\right\}$.

What is the dimension of the 1-eigenspace of B ?
\square

Let W be the subspace of \mathbb{R}^{4} given by all vectors $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)$ such that
$x-y+z+w=0$. Find dimension of the orthogonal complement W^{\perp}.
\square

If b is in the column space of the matrix A then every solution to $A x=b$ is a least squares solution.

O TrueFalse

Question 45

1 pts

If A is an $m \times n$ matrix, b is in \mathbb{R}^{m}, and \hat{x} is a least squares solution to $A x=b$, then \hat{x} is the point in $\operatorname{Col}(A)$ that is closest to b.

True

Oalse

Find the least squares solution \hat{x} to the linear system

$$
\left(\begin{array}{c}
6 \\
-2 \\
-2
\end{array}\right) x=\left(\begin{array}{c}
14 \\
-2 \\
0
\end{array}\right) .
$$

If your answer is an integer, enter an integer.
If your answer is not an integer, enter a fraction.
\square

Question 47

Find the best fit line $y=$ \square $x+\square$ for the data points $(-7,-22),(0,-2)$, and $(7,6)$ using the method of least squares. Your answers should both be integers.

Question 48

Let $A=\left(\begin{array}{ll}4 & 1 \\ 5 & 2\end{array}\right)\left(\begin{array}{cc}-3 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{ll}4 & 1 \\ 5 & 2\end{array}\right)^{-1}$.
Find r and s so that $A^{3}\binom{1}{2}=\binom{r}{s}$.
$r=$ \qquad
$s=$ \qquad

If A is a diagonalizable 6×6 matrix, then A has 6 distinct eigenvalues.TrueFalse

Question 50

Find the eigenvalues of the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 4 & 7\end{array}\right)$ and write them in increasing order.

The smaller eigenvalue is $\lambda_{1}=$ \square

The larger eigenvalue is $\lambda_{2}=$ \square

