Math 1553 Worksheet: Fundamentals, §1.1, and beginning §1.2

1. a) (Warm-up) Draw the set of all points in \mathbf{R}^{2} that satisfy the equation $x-y=0$, where we use (x, y) to denote points in \mathbf{R}^{2}.
b) Draw the set of all points in \mathbf{R}^{3} that satisfy the equation $x-y=0$, where we use (x, y, z) to denote points in \mathbf{R}^{3}. Geometrically, does this set form a line, a plane, or something else?
2. Richard Straker has eight light switches in order along a wall. He records which lights are on and which lights are off. To save time, he uses 0 to represent "off" and using 1 to represent "on" for each light.
a) Write an element of \mathbf{R}^{n} (for some n) that represents the situation when all the lights are on. What is n ?
b) Repeat part (a) when all lights are off.
3. Find all values of h so that the lines $x+h y=-5$ and $2 x-8 y=6$ do not intersect, and indicate what this means for the set of solutions to the linear system of equations

$$
\begin{aligned}
& x+h y=-5 \\
& 2 x-8 y=6
\end{aligned}
$$

For all h so that the lines do not intersect, draw the line $x+h y=-5$ and the line $2 x-8 y=6$ to verify that they do not intersect.
4. Consider the following three planes, where we use (x, y, z) to denote points in \mathbf{R}^{3} :

$$
\begin{array}{rr}
2 x+4 y+4 z= & 1 \\
2 x+5 y+2 z= & -1 \\
y+3 z= & 8
\end{array}
$$

Determine if all three of the planes intersect. If so, do they intersect at a single point, a line, or a plane?

