Math 1553 Worksheet §5.4-§5.5

Solutions

1. Write a matrix that is invertible but not diagonalizable.

Solution.

The matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is invertible but not diagonalizable.
2. Let $A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$. Find all eigenvalues of A. For each eigenvalue, find an associated eigenvector.

Solution.

The characteristic polynomial is

$$
\begin{gathered}
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \lambda+5 \\
\lambda^{2}-2 \lambda+5=0 \Longleftrightarrow \lambda=\frac{2 \pm \sqrt{4-20}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i
\end{gathered}
$$

For the eigenvalue $\lambda=1-2 i$, we use the shortcut trick you may have seen in class: the first row $\left(\begin{array}{ll}a & b\end{array}\right)$ of $A-\lambda I$ will lead to an eigenvector $\binom{-b}{a}$ (or equivalently, $\binom{b}{-a}$ if you prefer).

$$
(A-(1-2 i) I \mid 0)=\left(\begin{array}{rr|r}
2 i & 2 & 0 \\
(*) & (*) & 0
\end{array}\right) \quad \Longrightarrow \quad v=\binom{-2}{2 i}
$$

From the correspondence between conjugate eigenvalues and their eigenvectors, we know (without doing any additional work!) that for the eigenvalue $\lambda=1+2 i$, a corresponding eigenvector is $w=\bar{v}=\binom{-2}{-2 i}$.
If you used row-reduction for finding eigenvectors, you would find $v=\binom{i}{1}$ as an eigenvector for eigenvalue $1-2 i$, and $w=\binom{-i}{1}$ as an eigenvector for eigenvalue $1+2 i$.
3. The eigenspaces of some 2×2 matrix A are drawn below. Write an invertible matrix C and a diagonal matrix D so that $A=C D C^{-1}$. Can you find another pair of C and D so that $A=C D C^{-1}$?

Solution.

We choose D to be a diagonal matrix whose entries are the eigenvalues of A, and C a matrix whose columns are corresponding eigenvectors (written in the same order).

The eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=-2$.
The (-1)-eigenspace is spanned by $v_{1}=\binom{1}{-1}$.
The (-2)-eigenspace is spanned by $v_{2}=\binom{3}{2}$.
Therefore, we can choose $C=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)=\left(\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right)$ and $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)$.
There are many possibilities for C and D.
For example, since Span $\left\{\binom{1}{-1}\right\}=$ Span $\left\{\binom{-1}{1}\right\}$, we could have chosen $v_{1}=\binom{-1}{1}$ instead, so that

$$
C=\left(\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right), \quad D=\left(\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right) .
$$

Alternatively, we could have rearranged the order of the diagonal entries of D and taken care to use the corresponding order in the columns of C :

$$
C=\left(\begin{array}{cc}
3 & 1 \\
2 & -1
\end{array}\right), \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right) .
$$

Regardless, if you write any correct answers for C and D and go the extra step of carrying out the computation, you will obtain

$$
A=C D C^{-1}=-\frac{1}{5}\left(\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right)
$$

4. Suppose A is a 2×2 matrix satisfying

$$
A\binom{-1}{1}=\binom{2}{-2}, \quad A\binom{-2}{3}=\binom{0}{0}
$$

a) Diagonalize A by finding 2×2 matrices C and D (with D diagonal) so that $A=C D C^{-1}$.
b) Find A^{17}.

Solution.

a) From the information given, $\lambda_{1}=-2$ is an eigenvalue for A with corresponding eigenvector $\binom{-1}{1}$, and $\lambda_{2}=0$ is an eigenvalue with eigenvector $\binom{-2}{3}$. By the Diagonalization Theorem, $A=C D C^{-1}$ where

$$
C=\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right), \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right)
$$

b) We find $C^{-1}=\frac{1}{-3+2}\left(\begin{array}{cc}3 & 2 \\ -1 & -1\end{array}\right)=\left(\begin{array}{cc}-3 & -2 \\ 1 & 1\end{array}\right)$.

$$
\begin{aligned}
A^{17} & =C D^{17} C^{-1}=\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
(-2)^{17} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-3 & -2 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
3 \cdot 2^{17} & 2^{18} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-3 \cdot 2^{17} & -2^{18} \\
3 \cdot 2^{17} & 2^{18}
\end{array}\right) .
\end{aligned}
$$

