Math 1553 Worksheet §5.6-§6.5

Solutions

1. Courage Soda and Dexter Soda compete for a market of 210 customers who drink soda each day.
Today, Courage has 80 customers and Dexter has 130 customers. Each day: 70% of Courage Soda's customers keep drinking Courage Soda, while 30\% switch to Dexter Soda.
40% of Dexter Soda's customers keep drinking Dexter Soda, while 60% switch to Courage Soda.
a) Write a stochastic matrix A and a vector x so that $A x$ will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow.
You do not need to compute $A x$.

$$
A=\left(\begin{array}{ll}
0.7 & 0.6 \\
0.3 & 0.4
\end{array}\right) \text { and } x=\binom{80}{130}
$$

b) By finding the 1-eigenspace, work shows that the steady state vector is

$$
w=\binom{2 / 3}{1 / 3}
$$

Using this determine the following: in the long run, roughly how many daily customers will Courage Soda have?

As n gets large, $A^{n}\binom{80}{130}$ approaches $210\binom{2 / 3}{1 / 3}=\binom{140}{70}$. Courage will have roughly 140 customers.
2. a) Find the standard matrix B for proj_{W}, where $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$.
b) What are the eigenvalues of B ? Is B is diagonalizable?
c) Let $x=\left(\begin{array}{l}3 \\ 0 \\ 9\end{array}\right)$. Find the orthogonal decomposition of x with respect to W. In other words, find x_{W} in W and $x_{W^{\perp}}$ in W^{\perp} so that $x=x_{W}+x_{W^{\perp}}$.

Solution.

a) We use the formula $B=\frac{1}{u \cdot u} u u^{T}$ where $u=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ (this is the formula $B=A\left(A^{T} A\right)^{-1} A^{T}$ when " A " is just the single vector $\left.u\right)$.

$$
\begin{gathered}
B=\frac{1}{1(1)+1(1)+(-1)(-1)}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) \\
\Longrightarrow B=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
\end{gathered}
$$

b) $B x=x$ for every x in W, and $B x=0$ for every x in W^{\perp}, so B has two eigenvalues: $\lambda_{1}=1$ with algebraic and geometric multiplicity $1, \lambda_{2}=0$ with algebraic and geometric multiplicity 2 . Therefore, B is diagonalizable. In fact, if we wanted to, we actually could have actually computed B through diagonalization! Here $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ is an eigenvector for $\lambda_{1}=1$, whereas $v_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are linearly independent vectors that are orthogonal to v_{1}, so they span the eigenspace for $\lambda_{2}=0$. Therefore

$$
B=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right)^{-1}
$$

c) It follows that

$$
x_{W}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
0 \\
9
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-2 \\
2
\end{array}\right) .
$$

Hence, as

$$
x_{W^{\perp}}=x-x_{W}
$$

we have that

$$
x_{W^{\perp}}=\left(\begin{array}{l}
3 \\
0 \\
9
\end{array}\right)-\left(\begin{array}{c}
-2 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{l}
5 \\
2 \\
7
\end{array}\right)
$$

Thus, $x=\left(\begin{array}{c}-2 \\ -2 \\ 2\end{array}\right)+\left(\begin{array}{l}5 \\ 2 \\ 7\end{array}\right)$.
3. Use least-squares to find the best fit line $y=A x+B$ through the points $(0,0),(1,8)$, $(3,8)$, and $(4,20)$.

Solution.

We want to find a least squares solution to the system of linear equations

$$
\begin{aligned}
0 & =A(0)+B \\
8 & =A(1)+B \\
8 & =A(3)+B \\
20 & =A(4)+B
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)\binom{A}{B}=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right) .
$$

We compute

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
26 & 8 \\
8 & 4
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right)=\binom{112}{36} \\
& \left(\begin{array}{rr|r}
26 & 8 & 112 \\
8 & 4 & 36
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Hence the least squares solution is $A=4$ and $B=1$, so the best fit line is $y=4 x+1$.

