Math 1553 Worksheet §3.4

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - a) If A is an $n \times n$ matrix and the equation Ax = b has at least one solution for each b in \mathbb{R}^n , then the solution is *unique* for each b in \mathbb{R}^n .

b) If *A* is a 3×4 matrix and *B* is a 4×2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .

c) Suppose *A* and *B* are matrices so that the product *AB* is defined, and suppose that the transformations T(v) = Av and U(x) = Bx are one-to-one. Then the transformation $T \circ U$ must also be one-to-one.

- **2.** A is $m \times n$ matrix, B is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
 - **a)** Suppose x is in \mathbf{R}^m . Then ABx must be in:

	Col(A),	Nul(A),	Col(B),	Nul(B)	
--	---------	---------	---------	--------	--

b) Suppose x in \mathbb{R}^n . Then *BAx must be* in: $\boxed{\operatorname{Col}(A), \operatorname{Nul}(A), \operatorname{Col}(B), \operatorname{Nul}(B)}$

c) If m > n, then columns of AB could be linearly *independent*, *dependent*

d) If m > n, then columns of *BA* could be linearly *independent*, *dependent*

e) If m > n and Ax = 0 has nontrivial solutions, then columns of BA could be linearly independent, dependent

3. Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ T projects onto the *xy*-plane, forgetting the *z*-coordinate

 $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2 \quad U$ rotates clockwise by 90°

 $V : \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ V scales the x-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.

a) Write *A*, *B*, and *C*.

b) Compute the matrix for $V \circ U \circ T$.

c) Describe geometrically the transformation U^{-1} that would undo "U" in the sense that $(U^{-1} \circ U) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$. Now, do the same for *V*. (we will study these in sections 3.5 and 3.6, and they are called "inverses")