Math 1553 Worksheet §§3.5-4.3

1. True or false. Answer true if the statement is always true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and

$$
(A+B)^{-1}=A^{-1}+B^{-1} .
$$

c) Suppose A is an $n \times n$ matrix and every vector in \mathbf{R}^{n} can be written as a linear combination of the columns of A. Then A must be invertible.
d) If $\operatorname{det}(A)=1$ and c is a scalar, then $\operatorname{det}(c A)=c \operatorname{det}(A)$.
2. Let $A=\left(\begin{array}{rrrr}7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1\end{array}\right)$
a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}\left(A^{-1}\right)$ without doing any more work.
c) Compute $\operatorname{det}\left(\left(A^{T}\right)^{5}\right)$ without doing any more work.
d) Find the volume of the parallelepiped formed by the columns of A.
3. Suppose we have

$$
\operatorname{det}\left(\begin{array}{llc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=5
$$

Compute

$$
\operatorname{det}\left(\begin{array}{ccc}
d-3 a & e-3 b & f-3 c \\
a & b & c \\
2 g & 2 h & 2 i
\end{array}\right)
$$

