1. True or false: If v_1 and v_2 are linearly independent eigenvectors of an $n \times n$ matrix *A*, then they must correspond to different eigenvalues.

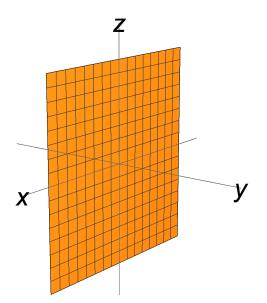
Solution.

False. For example, if $A = I_2$ then e_1 and e_2 are linearly independent eigenvectors both corresponding to the eigenvalue $\lambda = 1$.

- **2.** In what follows, *T* is a linear transformation with matrix *A*. Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)
 - **a)** $T : \mathbf{R}^3 \to \mathbf{R}^3$ that projects vectors onto the *xz*-plane in \mathbf{R}^3 .
 - **b)** $T : \mathbf{R}^2 \to \mathbf{R}^2$ that reflects vectors over the line y = 2x in \mathbf{R}^2 .

Solution.

a) We draw the *xz*-plane below.

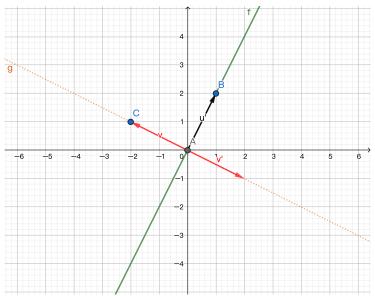


T(x, y, z) = (x, 0, z), so *T* fixes every vector in the *xz*-plane and destroys every vector of the form (0, a, 0) with *a* real. Therefore, $\lambda = 1$ and $\lambda = 0$ are eigenvalues and in fact they are the only eigenvalues since their combined eigenvectors span all of \mathbf{R}^3 .

The eigenvectors for $\lambda = 1$ are all vectors of the form $\begin{pmatrix} x \\ 0 \\ z \end{pmatrix}$ where at least one of x and z is nonzero, and the eigenvectors for $\lambda = 0$ are all vectors of the form $\begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$ where $y \neq 0$. In other words:

The 1-eigenspace consists of all vectors in Span $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$, while the 0-eigenspace consists of all vectors in Span $\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$

b) Here is the picture:



T fixes every vector along the line y = 2x, so $\lambda = 1$ is an eigenvalue and its eigenvectors are all vectors $\begin{pmatrix} t \\ 2t \end{pmatrix}$ where $t \neq 0$. *T* flips every vector along the line perpendicular to y = 2x, which is $y = -\frac{1}{2}x$ (for example, T(-2, 1) = (2, -1)). Therefore, $\lambda = -1$ is an eigenvalue and its eigenvectors are all vectors of the form $\begin{pmatrix} s \\ -\frac{1}{2}s \end{pmatrix}$ where $s \neq 0$.

3. Answer yes, no, or maybe. Justify your answers. In each case, *A* is a matrix whose entries are real numbers.

a) Suppose
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$$
. Then the characteristic polynomial of A is
$$\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$$

b) If *A* is a 3 × 3 matrix with characteristic polynomial $-\lambda(\lambda - 5)^2$, then the 5eigenspace is 2-dimensional.

Solution.

- a) Yes. Since $A \lambda I$ is triangular, its determinant is the product of its diagonal entries.
- **b)** Maybe. The geometric multiplicity of $\lambda = 5$ can be 1 or 2. For example, the

 - matrix $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ has a 5-eigenspace which is 2-dimensional, whereas the matrix $\begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ has a 5-eigenspace which is 1-dimensional. Both matrices

have characteristic polynomial $-\lambda(5-\lambda)^2$.

4. Find the eigenvalues and a basis for each eigenspace of $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$.

Solution.

We solve $0 = \det(A - \lambda I)$.

$$0 = \det \begin{pmatrix} 2-\lambda & 3 & 1\\ 3 & 2-\lambda & 4\\ 0 & 0 & -1-\lambda \end{pmatrix} = (-1-\lambda)(-1)^6 \det \begin{pmatrix} 2-\lambda & 3\\ 3 & 2-\lambda \end{pmatrix} = (-1-\lambda)((2-\lambda)^2 - 9)$$
$$= (-1-\lambda)(\lambda^2 - 4\lambda - 5) = -(\lambda + 1)^2(\lambda - 5).$$

So $\lambda = -1$ and $\lambda = 5$ are the eigenvalues.

$$\underline{\lambda = -1}: (A + I \mid 0) = \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 3 & 3 & 4 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 1 & 1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix},$$
with solution $x_1 = -x_2, x_2 = x_2, x_3 = 0$. The (-1)-eigenspace has basis $\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}.$

$$\lambda = 5$$
:

$$(A-5I \mid 0) = \begin{pmatrix} -3 & 3 & 1 \mid 0 \\ 3 & -3 & 4 \mid 0 \\ 0 & 0 & -6 \mid 0 \end{pmatrix} \xrightarrow{R_2 = R_2 + R_1} \begin{pmatrix} -3 & 3 & 1 \mid 0 \\ 0 & 0 & 5 \mid 0 \\ 0 & 0 & 1 \mid 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_3, R_2 = R_2 - 5R_3} \begin{pmatrix} 1 & -1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix},$$

with solution
$$x_1 = x_2$$
, $x_2 = x_2$, $x_3 = 0$. The 5-eigenspace has basis $\begin{cases} 1 \\ 1 \\ 0 \end{cases}$.