Math 1553 Worksheet: Sections 5.1-5.2

1. True or false: If v_{1} and v_{2} are linearly independent eigenvectors of an $n \times n$ matrix A, then they must correspond to different eigenvalues.

Solution.

False. For example, if $A=I_{2}$ then e_{1} and e_{2} are linearly independent eigenvectors both corresponding to the eigenvalue $\lambda=1$.
2. In what follows, T is a linear transformation with matrix A. Find the eigenvectors and eigenvalues of A without doing any matrix calculations. (Draw a picture!)
a) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that projects vectors onto the $x z$-plane in \mathbf{R}^{3}.
b) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that reflects vectors over the line $y=2 x$ in \mathbf{R}^{2}.

Solution.

a) We draw the $x z$-plane below.

$T(x, y, z)=(x, 0, z)$, so T fixes every vector in the $x z$-plane and destroys every vector of the form ($0, a, 0$) with a real. Therefore, $\lambda=1$ and $\lambda=0$ are eigenvalues and in fact they are the only eigenvalues since their combined eigenvectors span all of \mathbf{R}^{3}.

The eigenvectors for $\lambda=1$ are all vectors of the form $\left(\begin{array}{c}x \\ 0 \\ z\end{array}\right)$ where at least one of x and z is nonzero, and the eigenvectors for $\lambda=0$ are all vectors of the form $\left(\begin{array}{l}0 \\ y \\ 0\end{array}\right)$ where $y \neq 0$. In other words:
The 1-eigenspace consists of all vectors in $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$, while the 0 eigenspace consists of all vectors in Span $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$
b) Here is the picture:

T fixes every vector along the line $y=2 x$, so $\lambda=1$ is an eigenvalue and its eigenvectors are all vectors $\binom{t}{2 t}$ where $t \neq 0$.
T flips every vector along the line perpendicular to $y=2 x$, which is $y=-\frac{1}{2} x$ (for example, $T(-2,1)=(2,-1)$). Therefore, $\lambda=-1$ is an eigenvalue and its eigenvectors are all vectors of the form $\binom{s}{-\frac{1}{2} s}$ where $s \neq 0$.
3. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) Suppose $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7\end{array}\right)$. Then the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(1-\lambda)(7-\lambda)
$$

b) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2 -dimensional.

Solution.

a) Yes. Since $A-\lambda I$ is triangular, its determinant is the product of its diagonal entries.
b) Maybe. The geometric multiplicity of $\lambda=5$ can be 1 or 2 . For example, the matrix $\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 2-dimensional, whereas the matrix $\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0\end{array}\right)$ has a 5-eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(5-\lambda)^{2}$.
4. Find the eigenvalues and a basis for each eigenspace of $A=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$.

Solution.

We solve $0=\operatorname{det}(A-\lambda I)$.

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 3 & 1 \\
3 & 2-\lambda & 4 \\
0 & 0 & -1-\lambda
\end{array}\right)=(-1-\lambda)(-1)^{6} \operatorname{det}\left(\begin{array}{cc}
2-\lambda & 3 \\
3 & 2-\lambda
\end{array}\right)=(-1-\lambda)\left((2-\lambda)^{2}-9\right) \\
& =(-1-\lambda)\left(\lambda^{2}-4 \lambda-5\right)=-(\lambda+1)^{2}(\lambda-5) .
\end{aligned}
$$

So $\lambda=-1$ and $\lambda=5$ are the eigenvalues.
$\xrightarrow{\lambda=-1}:(A+I \mid 0)=\left(\begin{array}{lll|l}3 & 3 & 1 & 0 \\ 3 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \xrightarrow{R_{2}=R_{2}-R_{1}}\left(\begin{array}{lll|l}3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1} / 3]{R_{1}=R_{1}-R_{2}}\left(\begin{array}{lll|l}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$,
with solution $x_{1}=-x_{2}, x_{2}=x_{2}, x_{3}=0$. The (-1)-eigenspace has basis $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$.
$\underline{\lambda=5}:$
$(A-5 I \mid 0)=\left(\begin{array}{rrr|r}-3 & 3 & 1 & 0 \\ 3 & -3 & 4 & 0 \\ 0 & 0 & -6 & 0\end{array}\right) \xrightarrow[R_{3}=R_{3} /(-6)]{R_{2}=R_{2}+R_{1}}\left(\begin{array}{rrr|r}-3 & 3 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \xrightarrow[\text { then } R_{2} \leftrightarrow R_{3}, R_{1} /(-3)]{R_{1}=R_{1}-R_{3}, R_{2}=R_{2}-5 R_{3}}\left(\begin{array}{rrr|r}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$,
with solution $x_{1}=x_{2}, x_{2}=x_{2}, x_{3}=0$. The 5 -eigenspace has basis $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$.

