Chapter 1

Linear Equations

Recall that **R** denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0, -1, \pi, \frac{3}{2}, \ldots$

Definition

Let n be a positive whole number. We define

 \mathbf{R}^n = all ordered *n*-tuples of real numbers $(x_1, x_2, x_3, \dots, x_n)$.

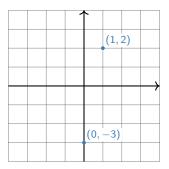
Example

When n = 1, we just get **R** back: $\mathbf{R}^1 = \mathbf{R}$. Geometrically, this is the *number* line.

Line, Plane, Space, ... Continued

Example

When n = 2, we often think of \mathbf{R}^2 as the xy-plane or simply the plane. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x- and y-coordinates.

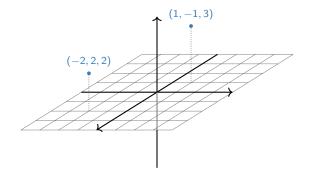


We can use the elements of \mathbf{R}^2 to *label* points on the plane, but \mathbf{R}^2 is not defined to be the *xy*-plane!

Line, Plane, Space, ... Continued

Example

When n = 3, we can think of \mathbf{R}^3 as the *space* we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its *x*-, *y*-, and *z*-coordinates.

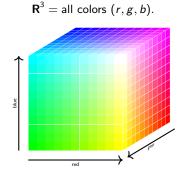


Again, we can use the elements of \mathbf{R}^3 to *label* points in space, but \mathbf{R}^3 is not defined to be space!

Line, Plane, Space, ... Continued

Example

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. So we could also think of \mathbb{R}^3 as the space of all *colors*:



Again, we can use the elements of \mathbf{R}^3 to *label* the colors, but \mathbf{R}^3 is not defined to be the space of all colors!

So what is \mathbf{R}^4 ? or \mathbf{R}^5 ? or \mathbf{R}^n ?

... go back to the *definition*: ordered *n*-tuples of real numbers

$$(x_1, x_2, x_3, \ldots, x_n).$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^2 and \mathbf{R}^3 sometimes extends to \mathbf{R}^n , but they're harder to visualize.

Last time we could have used \mathbf{R}^4 to label the amount of traffic (x, y, z, w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbf{R}^n , but we'll only draw pictures for \mathbf{R}^2 and \mathbf{R}^3 .

Section 1.1

Systems of Linear Equations

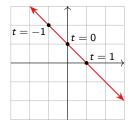
What does the solution set of a linear equation look like?

x + y = 1 where y = 1 - xThis is called the **implicit equation** of the line.

We can write the same line in parametric form in ${\bf R}^2:$

(x, y) = (t, 1-t) t in **R**.

This means that every point on the line has the form (t, 1 - t) for some real number t.

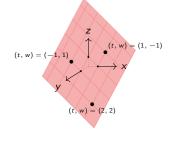


Aside

What is a line? A ray that is *straight* and infinite in both directions.

What does the solution set of a linear equation look like?

 $x + y + z = 1 \xrightarrow{\text{www}}$ a plane in space: This is the **implicit equation** of the plane.



Does this plane have a parametric form?

$$(x, y, z) = (t, w, 1 - t - w)$$
 $t, w \text{ in } \mathbf{R}.$

Note you need *two* parameters *t* and *w*.

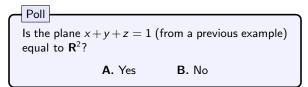
Aside

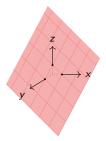
What is a plane? Intuitively, we think of a plane as a flat sheet of paper that's infinite in all directions. But (as we see on the next slide) this generalizes to something more!

What does the solution set of a linear equation look like?

x + y + z + w = 1 where x + y + z + w = 1 a "3-plane" in "4-space"... [not pictured here]

Everybody get out your gadgets!





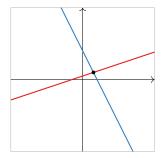
No! Every point on this plane is in \mathbf{R}^3 : that means it has three coordinates. For instance, (1,0,0). Every point in \mathbf{R}^2 has two coordinates. They're *different* planes.

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

$$x - 3y = -3$$
$$2x + y = 8$$

... is the *intersection* of two lines, which is a *point* in this case.



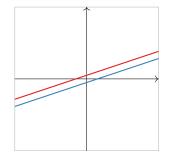
In general it's an intersection of lines, planes, etc.

Kinds of Solution Sets

In what other ways can two lines intersect?

x - 3y = -3x - 3y = 3

has no solution: the lines are *parallel*.



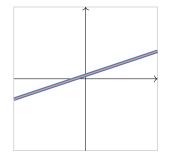
A system of equations with no solutions is called inconsistent.

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$
$$2x - 6y = -6$$

has infinitely many solutions: they are the *same line*.



Note that multiplying an equation by a nonzero number gives the *same* solution set. In other words, they are *equivalent* (systems of) equations.

Example

Solve the system of equations

x + 2y + 3z = 6 2x - 3y + 2z = 143x + y - z = -2

This is the kind of problem we'll talk about for the first half of the course.

- A solution is a list of numbers x, y, z, ... that make all of the equations true.
- The solution set is the collection of all solutions.
- Solving the system means finding the solution set.

What is a systematic way to solve a system of equations?

Example

Solve the system of equations

$$x + 2y + 3z = 6$$

$$2x - 3y + 2z = 14$$

$$3x + y - z = -2$$

What strategies do you know?

- Substitution
- Elimination

Both are perfectly valid, but only elimination scales well to large numbers of equations.

Example

Solve the system of equations

x + 2y + 3z = 6 2x - 3y + 2z = 143x + y - z = -2

Elimination method: in what ways can you manipulate the equations?

Multiply an equation by a nonzero number. (scale)
Add a multiple of one equation to another. (replacement)
Swap two equations. (swap)

Example

Solve the system of equations

2x -	2y + 3z = 6 3y + 2z = 14 y - z = -2
Multiply first by -3	-3x - 6y - 9z = -182x - 3y + 2z = 143x + y - z = -2
Add first to third	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Now I've eliminated x from the last equation!

... but there's a long way to go still. Can we make our lives easier?

It sure is a pain to have to write x, y, z, and = over and over again.

Matrix notation: write just the numbers, in a box, instead!

$$\begin{array}{c|cccc} x + 2y + 3z &= & 6 \\ 2x - 3y + 2z &= & 14 \\ 3x + y - & z &= -2 \end{array} \qquad \begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 2 & -3 & 2 & | & 14 \\ 3 & 1 & -1 & | & -2 \end{pmatrix}$$

This is called an **(augmented) matrix**. Our equation manipulations become **elementary row operations**:

Multiply all entries in a row by a nonzero number. (scale)
 Add a multiple of each entry of one row to the corresponding entry in another. (row replacement)
 Swap two rows. (swap)

Row Operations

Example

Solve the system of equations

$$x + 2y + 3z = 6$$

$$2x - 3y + 2z = 14$$

$$3x + y - z = -2$$

Start:

/1	2	3	6 \
2	-3	2	14
3	1	$^{-1}$	-2/

Goal: we want our elimination method to eventually produce a system of equations like

$$\begin{array}{cccc} x & & = A & \\ y & & = B & \text{ or in matrix form, } & \begin{pmatrix} 1 & 0 & 0 & | & A \\ 0 & 1 & 0 & | & B \\ 0 & 0 & 1 & | & C \end{pmatrix} \\ z = C & & \end{array}$$

So we need to do row operations that make the start matrix look like the end one.

Strategy: fiddle with it so we only have ones and zeros.

Row Operations

$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 2 & -3 & 2 & | & 14 \\ 3 & 1 & -1 & | & -2 \end{pmatrix}$$

 $R_2 = R_2 - 2R_1$

 $R_3 = R_3 - 3R_1$

We want these to be zero. So we subract multiples of the first row.

$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{pmatrix}$$

We want these to be zero.

It would be nice if this were a 1. We could divide by -7, but that would produce ugly fractions.

Let's swap the last two rows first.

 $R_2 \longleftrightarrow R_3$

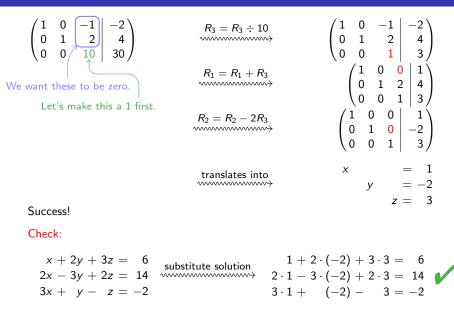
 $R_2 = R_2 \div -5$

 $R_1 = R_1 - 2R_2$

 $R_3 = R_3 + 7R_2$

$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -7 & -4 & | & 2 \\ 3 & 1 & -1 & | & -2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -7 & -4 & | & 2 \\ 0 & -5 & -10 & | & -20 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -5 & -10 & | & -20 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 4 \\ 0 & 0 & 10 & | & 30 \end{pmatrix}$$

Row Operations



Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

Definition

Two matrices are called **row equivalent** if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.

A Bad Example

Example

Solve the system of equations

$$x + y = 2$$

$$3x + 4y = 5$$

$$4x + 5y = 9$$

Let's try doing row operations:

First clear these by
subtracting multiples
of the first row.
Now clear this by
subtracting

$$\begin{pmatrix}
1 & 1 & | & 2 \\
3 & 4 & 5 & | & 9
\end{pmatrix}$$

$$R_2 = R_2 - 3R_1$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
4 & 5 & | & 9
\end{pmatrix}$$

$$R_3 = R_3 - 4R_1$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 1 & | & 1
\end{pmatrix}$$
Now clear this by
subtracting
the second row.

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 1 & | & 1
\end{pmatrix}$$

$$R_3 = R_3 - R_2$$

$$\begin{pmatrix}
1 & 1 & | & 2 \\
0 & 1 & | & -1 \\
0 & 0 & | & 2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \xrightarrow{\text{translates into}} \begin{array}{c} x + y = 2 \\ & y = -1 \\ 0 = 2 \end{array}$$

In other words, the original equations

But the latter system obviously has no solutions (there is no way to make them all true), so our original system has no solutions either.

Definition

A system of equations is called **inconsistent** if it has no solution. It is **consistent** otherwise.