Section 1.3

Vector Equations

Motivation

We want to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes, etc).

$$
\begin{aligned}
x-3 y & =-3 \\
2 x+y & =8
\end{aligned}
$$

This will give us better insight into the properties of systems of equations and their solution sets.

Points and Vectors

We have been drawing elements of \mathbf{R}^{n} as points in the line, plane, space, etc. We can also draw them as arrows.

Definition

A point is an element of \mathbf{R}^{n}, drawn as a point (a dot).

A vector is an element of \mathbf{R}^{n}, drawn as an arrow. When we think of an element of \mathbf{R}^{n} as a vector, we'll usually write it vectically, like a matrix with one column:

$$
v=\binom{1}{3}
$$

[interactive]

The difference is purely psychological: points and vectors are just lists of numbers.

Points and Vectors

So why make the distinction?
A vector need not start at the origin: it can be located anywhere! In other words, an arrow is determined by its length and its direction, not by its location.

$$
\text { These arrows all represent the vector }\binom{1}{2} \text {. }
$$

However, unless otherwise specified, we'll assume a vector starts at the origin.

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.
Another way to think about it: a vector is a difference between two points, or the arrow from one point to another.
For instance, $\binom{1}{2}$ is the arrow from $(1,1)$ to $(2,3)$.

Vector Algebra

Definition

- We can add two vectors together:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a+x \\
b+y \\
c+z
\end{array}\right)
$$

- We can multiply, or scale, a vector by a real number c :

$$
c\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
c \cdot x \\
c \cdot y \\
c \cdot z
\end{array}\right) .
$$

We call c a scalar to distinguish it from a vector. If v is a vector and c is a scalar, $c v$ is called a scalar multiple of v.
(And likewise for vectors of length n.) For instance,

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{l}
5 \\
7 \\
9
\end{array}\right) \quad \text { and } \quad-2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right)
$$

Vector Addition and Subtraction: Geometry

The parallelogram law for vector addition
Geometrically, the sum of two vectors v, w is obtained as follows: place the tail of w at the head of v. Then $v+w$ is the vector whose tail is the tail of v and whose head is the head of w. Doing this both ways creates a parallelogram. For example,

$$
\binom{1}{3}+\binom{4}{2}=\binom{5}{5} .
$$

Why? The width of $v+w$ is the sum of the widths, and likewise with the heights.
[interactive]

Vector subtraction

Geometrically, the difference of two vectors v, w is obtained as follows: place the tail of v and w at the same point. Then $v-w$ is the vector from the head of v to the head of w. For example,

$$
\binom{1}{4}-\binom{4}{2}=\binom{-3}{2}
$$

Why? If you add $v-w$ to w, you get v. [interactive]
This works in higher dimensions too!

Scalar Multiplication: Geometry

Scalar multiples of a vector
These have the same direction but a different length.

Some multiples of v.

$$
\begin{aligned}
v & =\binom{1}{2} \\
2 v & =\binom{2}{4} \\
-\frac{1}{2} v & =\binom{-\frac{1}{2}}{-1} \\
0 v & =\binom{0}{0}
\end{aligned}
$$

All multiples of v ?

[interactive]

So the scalar multiples of v form a line.

Linear Combinations

We can add and scalar multiply in the same equation:

$$
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

where $c_{1}, c_{2}, \ldots, c_{p}$ are scalars, $v_{1}, v_{2}, \ldots, v_{p}$ are vectors in \mathbf{R}^{n}, and w is a vector in \mathbf{R}^{n}.

Definition

We call w a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{p}$. The scalars $c_{1}, c_{2}, \ldots, c_{p}$ are called the weights or coefficients.

Example

$$
\text { Let } v=\binom{1}{2} \text { and } w=\binom{1}{0} \text {. }
$$

What are some linear combinations of v and w ?

- $v+w$
- $v-w$
- $2 v+0 w$
- $2 w$
- $-v$
[interactive]

```
Poll
Is there any vector in }\mp@subsup{\mathbf{R}}{}{2}\mathrm{ that is not a linear
combination of v}\mathrm{ and w?
```

No: in fact, every vector in \mathbf{R}^{2} is a combination of v and w.

(The purple lines are to help measure how much of v and w you need to get to a given point.)

More Examples

What are some linear combinations of $v=\binom{2}{1}$?

- $\frac{3}{2} v$
- $-\frac{1}{2} v$
- ...

What are all linear combinations of v ?
All vectors $c v$ for c a real number. I.e., all scalar multiples of v. These form a line.

Question

What are all linear combinations of

$$
v=\binom{2}{2} \quad \text { and } \quad w=\binom{-1}{-1} ?
$$

Answer: The line which contains both vectors.
What's different about this example and the one on the poll?

Systems of Linear Equations

Question

Is $\left(\begin{array}{c}8 \\ 16 \\ 3\end{array}\right)$ a linear combination of $\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)$?
[interactive]
This means: can we solve the equation

$$
x\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)+y\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

where x and y are the unknowns (the coefficients)? Rewrite:

$$
\left(\begin{array}{c}
x \\
2 x \\
6 x
\end{array}\right)+\left(\begin{array}{c}
-y \\
-2 y \\
-y
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{c}
x-y \\
2 x-2 y \\
6 x-y
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

This is just a system of linear equations:

$$
\begin{aligned}
x-y & =8 \\
2 x-2 y & =16 \\
6 x-y & =3
\end{aligned}
$$

Systems of Linear Equations

Continued

$$
\begin{aligned}
& \begin{array}{rr}
x-y=8 \\
2 x-2 y=16 \\
6 x-y & =3
\end{array} \quad \text { matrix form } \quad\left(\begin{array}{rr|r}
1 & -1 & 8 \\
2 & -2 & 16 \\
6 & -1 & 3
\end{array}\right) \\
& \begin{array}{l}
\text { row reduce } \\
\text { solution } \\
\text { wnmun }
\end{array} \\
& \begin{array}{c}
\left(\begin{array}{rr|r}
1 & 0 & -1 \\
0 & 1 & -9 \\
0 & 0 & 0
\end{array}\right) \\
x=-1 \\
y=-9
\end{array}
\end{aligned}
$$

Conclusion:

$$
-\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)-9\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

[interactive]
What is the relationship between the original vectors and the matrix form of the linear equation? They have the same columns!

Shortcut: You can make the augmented matrix without writing down the system of linear equations first.

Vector Equations and Linear Equations

Summary
The vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=b
$$

where $v_{1}, v_{2}, \ldots, v_{p}, b$ are vectors in \mathbf{R}^{n} and $x_{1}, x_{2}, \ldots, x_{p}$ are scalars, has the same solution set as the linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{p} & b \\
\mid & \mid & & \mid & \mid
\end{array}\right),
$$

where the v_{i} 's and b are the columns of the matrix.

So we now have (at least) two equivalent ways of thinking about linear systems of equations:

1. Augmented matrices.
2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.

Span

It is important to know what are all linear combinations of a set of vectors $v_{1}, v_{2}, \ldots, v_{p}$ in \mathbf{R}^{n} : it's exactly the collection of all b in \mathbf{R}^{n} such that the vector equation (in the unknowns $x_{1}, x_{2}, \ldots, x_{p}$)

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=b
$$

has a solution (i.e., is consistent).

Definition

Let $v_{1}, v_{2}, \ldots, v_{p}$ be vectors in \mathbf{R}^{n}. The span of $v_{1}, v_{2}, \ldots, v_{p}$ is the collection of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$, and is denoted $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. In symbols:

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}=\left\{x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p} \mid x_{1}, x_{2}, \ldots, x_{p} \text { in } \mathbf{R}\right\}
$$

Synonyms: $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the subset spanned by or generated by $v_{1}, v_{2}, \ldots, v_{p}$.

This is the first of several definitions in this class that you simply must learn. I will give you other ways to think about Span, and ways to draw pictures, but this is the definition. Having a vague idea what Span means will not help you solve any exam problems!

Span

Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of $v_{1}, v_{2}, \ldots, v_{p}$.
2. The vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=b
$$

has a solution.
3. The linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{p} & b \\
\mid & \mid & & \mid & \mid
\end{array}\right)
$$

is consistent.
[interactive example]
Note: equivalent means that, for any given list of vectors $v_{1}, v_{2}, \ldots, v_{p}, b$, either all three statements are true, or all three statements are false.

Pictures of Span

Drawing a picture of $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the same as drawing a picture of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$.

Pictures of Span

$\ln R^{3}$

[interactive: span of two vectors in \mathbf{R}^{3}]

[interactive: span of three vectors in \mathbf{R}^{3}]

