Section 1.4

The Matrix Equation $A x=b$

Matrix \times Vector

the first number is the second number is
the number of rows the number of columns
Let A be an $\stackrel{m}{m} \times n$ matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

with columns $v_{1}, v_{2}, \ldots, v_{n}$

Definition

The product of A with a vector x in \mathbf{R}^{n} is the linear combination

The output is a vector in \mathbf{R}^{m}.
this means the equality

$$
A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \uparrow
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n} \\
\uparrow
\end{array} \xlongequal{\stackrel{\text { def }}{=}} \begin{array}{c}
\text { is a definition } \\
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n} . \\
\text { these must be equal }
\end{array}\right.
$$

Note that the number of columns of A has to equal the number of rows of x.
Example

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1\binom{4}{7}+2\binom{5}{8}+3\binom{6}{9}=\binom{32}{50}
$$

Matrix Equations

An example

Question

Let v_{1}, v_{2}, v_{3} be vectors in \mathbf{R}^{3}. How can you write the vector equation

$$
2 v_{1}+3 v_{2}-4 v_{3}=\left(\begin{array}{l}
7 \\
2 \\
1
\end{array}\right)
$$

in terms of matrix multiplication?
Answer: Let A be the matrix with colums v_{1}, v_{2}, v_{3}, and let x be the vector with entries $2,3,-4$. Then

$$
A x=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)=2 v_{1}+3 v_{2}-4 v_{3}
$$

so the vector equation is equivalent to the matrix equation

$$
A x=\left(\begin{array}{l}
7 \\
2 \\
1
\end{array}\right)
$$

Matrix Equations

Let $v_{1}, v_{2}, \ldots, v_{n}$, and b be vectors in \mathbf{R}^{m}. Consider the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=b
$$

It is equivalent to the matrix equation

$$
A x=b
$$

where

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Conversely, if A is any $m \times n$ matrix, then

$$
A x=b \quad \begin{array}{cc}
\text { is equivalent to the } & x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=b
\end{array}
$$

where v_{1}, \ldots, v_{n} are the columns of A, and x_{1}, \ldots, x_{n} are the entries of x.

Linear Systems, Vector Equations, Matrix Equations, ...

We now have four equivalent ways of writing (and thinking about) linear systems:

1. As a system of equations:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
x_{1}-x_{2}=5
\end{array}
$$

2. As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right)
$$

3. As a vector equation $\left(x_{1} v_{1}+\cdots+x_{n} v_{n}=b\right)$:

$$
x_{1}\binom{2}{1}+x_{2}\binom{3}{-1}=\binom{7}{5}
$$

We will move back and forth freely between these over and over again, for the rest of the semester. Get comfortable with them now!
4. As a matrix equation $(A x=b)$:

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{5}
$$

In particular, all four have the same solution set.

Matrix \times Vector

Another way

Definition

A row vector is a matrix with one row. The product of a row vector of length n and a (column) vector of length n is

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \stackrel{\text { def }}{=} a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

This is a scalar.
If A is an $m \times n$ matrix with rows $r_{1}, r_{2}, \ldots, r_{m}$, and x is a vector in \mathbf{R}^{n}, then

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
-r_{2}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
r_{2} x \\
\vdots \\
r_{m} x
\end{array}\right)
$$

This is a vector in \mathbf{R}^{m} (again).

Matrix \times Vector

Both ways

Example

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\binom{(456)\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)}{(789)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)}=\binom{4 \cdot 1+5 \cdot 2+6 \cdot 3}{7 \cdot 1+8 \cdot 2+9 \cdot 3}=\binom{32}{50} .
$$

Note this is the same as before:

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1\binom{4}{7}+2\binom{5}{8}+3\binom{6}{9}=\binom{1 \cdot 4+2 \cdot 5+3 \cdot 6}{1 \cdot 7+2 \cdot 8+3 \cdot 9}=\binom{32}{50}
$$

Now you have two ways of computing $A x$.
In the second, you calculate $A x$ one entry at a time.
The second way is usually the most convenient, but we'll use both.

Spans and Solutions to Equations

Let A be a matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Very Important Fact That Will Appear on Every Midterm and the Final
$A x=b$ has a solution
\Longleftrightarrow there exist x_{1}, \ldots, x_{n} such that $A\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=b$
\Longleftrightarrow there exist x_{1}, \ldots, x_{n} such that $x_{1} v_{1}+\cdots+x_{n} v_{n}=b$
$\Longleftrightarrow b$ is a linear combination of v_{1}, \ldots, v_{n}
$\longrightarrow b$ is in the span of the columns of A.

The last condition is geometric.

Spans and Solutions to Equations

Example

Question

Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
[interactive]

Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Output vector:

$$
b=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ? It sure doesn't look like it.
Conclusion: $A x=b$ is inconsistent.

Spans and Solutions to Equations

Example, continued

Question

Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
Answer: Let's check by solving the matrix equation using row reduction.
The first step is to put the system into an augmented matrix.

$$
\left(\begin{array}{rr|r}
2 & 1 & 0 \\
-1 & 0 & 2 \\
1 & -1 & 2
\end{array}\right) \xrightarrow{\text { row reduce }}\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The last equation is $0=1$, so the system is inconsistent.
In other words, the matrix equation

$$
\left(\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right) x=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

has no solution, as the picture shows.

Spans and Solutions to Equations

Example

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?

Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Solution vector:

$$
b=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ? It looks like it: in fact,

$$
b=1 v+(-1) w \Longrightarrow x=\binom{1}{-1}
$$

Spans and Solutions to Equations

Example, continued

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?
Answer: Let's do this systematically using row reduction.

$$
\left(\begin{array}{rr|r}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 2
\end{array}\right) \xrightarrow{\text { row reduce }}\left(\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

This gives us

$$
x=1 \quad y=-1 .
$$

This is consistent with the picture on the previous slide:

$$
1\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)-1\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \quad \text { or } \quad A\binom{1}{-1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) .
$$

Poll
True or false: (can be done by eyeballing equation)
The matrix equation $\left(\begin{array}{ccc}1 & -3 & 0 \\ 0 & 2 & 3 \\ 0 & -1 & 6\end{array}\right) \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbf{R}^{3}.
A. True
B. False

When Solutions Always Exist

Here are criteria for a linear system to always have a solution.

Theorem

Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent:

1. $A x=b$ has a solution for $a l l b$ in \mathbf{R}^{m}.
2. The span of the columns of A is all of \mathbf{R}^{m}.
3. A has a pivot in each row.

Why is (1) the same as (2)? This was the Very Important box from before.
Why is (1) the same as (3)? If A has a pivot in each row then its reduced row echelon form looks like this:

$$
\left.\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right) \quad \begin{array}{ccccc|c}
\quad \text { and }(A \mid b) \\
\text { reduces to this: }
\end{array} \quad\left(\begin{array}{cccc}
1 & 0 & \star & 0 \\
\star & \star \\
0 & 1 & \star & 0 \\
\star & \star \\
0 & 0 & 0 & 1
\end{array}\right) \star \begin{array}{|c}
\star
\end{array}\right) .
$$

There's no b that makes it inconsistent, so there's always a solution. If A doesn't have a pivot in each row, then its reduced form looks like this:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{gathered}
\text { and this can be } \\
\text { made } \\
\text { inconsistent: }
\end{gathered} \quad\left(\begin{array}{lllll|r}
1 & 0 & \star & 0 & \star & 0 \\
0 & 1 & \star & 0 & \star & 0 \\
0 & 0 & 0 & 0 & 0 & 16
\end{array}\right) .
$$

When Solutions Always Exist

Theorem
Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent:

1. $A x=b$ has a solution for all b in \mathbf{R}^{m}.
2. The span of the columns of A is all of \mathbf{R}^{m}.
3. A has a pivot in each row.

In the following demos, the red region is the span of the columns of A. This is the same as the set of all b such that $A x=b$ has a solution.
[example where the criteria are satisfied]
[example where the criteria are not satisfied]

Properties of the Matrix-Vector Product

Let c be a scalar, u, v be vectors, and A a matrix.

- $A(u+v)=A u+A v$
- $A(c v)=c A v$

See Lay, §1.4, Theorem 5.

For instance, $A(3 u-7 v)=3 A u-7 A v$.
Consequence: If u and v are solutions to $A x=0$, then so is every vector in Span $\{u, v\}$. Why?

$$
\left\{\begin{array}{l}
A u=0 \\
A v=0
\end{array} \quad \Longrightarrow \quad A(x u+y v)=x A u+y A v=x 0+y 0=0\right.
$$

(Here 0 means the zero vector.)

Important

The set of solutions to $A x=0$ is a span.

