Section 1.8/1.9

Linear Transformations

Motivation

Let A be an $m \times n$ matrix. For the matrix equation $A x=b$ we have learned to describe

- the solution set: all x in \mathbf{R}^{n} making the equation true.
- the column span: the set of all b in \mathbf{R}^{m} making the equation consistent.

It turns out these two sets are very closely related to each other (the rank-nullity theorem).

In order to understand this relationship, it helps to think of the matrix A as a transformation from \mathbf{R}^{n} to \mathbf{R}^{m}.

It's a special kind of transformation called a linear transformation.
This is also a way to understand the geometry of matrices.

Matrices as Functions

Change in Perspective. Let A be a matrix with m rows and n columns. Let's think about the matrix equation $b=A x$ as a function.

- The independent variable (the input) is x, which is a vector in \mathbf{R}^{n}.
- The dependent variable (the output) is b, which is a vector in \mathbf{R}^{m}.

As you vary x, then $b=A x$ also varies. The set of all possible output vectors b is the column span of A.

Matrices as Functions

Projection

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In the equation $A \mathbf{x}=b$, the input vector \mathbf{x} is in \mathbf{R}^{3} and the output vector b is in \mathbf{R}^{3}. What is $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$?

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

This is projection onto the xy-plane in \mathbf{R}^{3}. Picture:

Matrices as Functions

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

In the equation $A \mathbf{x}=b$, the input vector \mathbf{x} is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-x_{1}}{x_{2}} .
$$

This is reflection over the y-axis. Picture:

[interactive]

Matrices as Functions

$$
A=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)
$$

In the equation $A \mathbf{x}=b$, the input vector \mathbf{x} is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}.

$$
A\binom{x}{y}=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y} .
$$

This is dilation (scaling) by a factor of 1.5. Picture:

[interactive]

Matrices as Functions

Rotation

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

In the equation $A \mathbf{x}=b$, the input vector \mathbf{x} is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x}{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x} .
$$

What is this? Let's plug in a few points and see what happens.

$$
\begin{aligned}
A\binom{1}{2} & =\binom{-2}{1} \\
A\binom{-1}{1} & =\binom{-1}{-1} \\
A\binom{0}{-2} & =\binom{2}{0}
\end{aligned}
$$

It looks like counterclockwise rotation by 90°.

Matrices as Functions

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

In the equation $A \mathbf{x}=b$, the input vector \mathbf{x} is in \mathbf{R}^{2} and the output vector b is in \mathbf{R}^{2}. Then

$$
A\binom{x}{y}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x} .
$$

[interactive]

Transformations

We have been drawing pictures of what it looks like to multiply a matrix by a vector, as a function of the vector.

Now let's go the other direction. Suppose we have a function, and we want to know, does it come from a matrix?

Example

For a vector x in \mathbf{R}^{2}, let $T(x)$ be the counterclockwise rotation of x by an angle θ. Is $T(x)=A x$ for some matrix A ?

If $\theta=90^{\circ}$, then we know $T(x)=A x$, where

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

But for general θ, it's not clear.

Our next goal is to answer this kind of question.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

- \mathbf{R}^{n} is called the domain of T (the inputs).
- \mathbf{R}^{m} is called the codomain of T (where the outputs live).
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is the image of x under T. Notation: $x \mapsto T(x)$.
- The set of all images $\left\{T(x) \mid x\right.$ in $\left.\mathbf{R}^{n}\right\}$ is the range of T.

Notation:

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { means } \quad T \text { is a transformation from } \mathbf{R}^{n} \text { to } \mathbf{R}^{m}
$$

It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the output.

Functions from Calculus

Many of the functions you know and love have domain and codomain R.

$$
\sin : \mathbf{R} \longrightarrow \mathbf{R} \quad \sin (x)=\left(\begin{array}{l}
\text { the length of the opposite edge over the } \\
\text { hypotenuse of a right triangle with angle } \\
x \text { in radians }
\end{array}\right)
$$

Note how l've written down the rule that defines the function sin.

$$
f: \mathbf{R} \longrightarrow \mathbf{R} \quad f(x)=x^{2}
$$

Note that " $x^{2 \text { " }}$ is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

The horizontal axis is the domain, and the vertical axis is the codomain.

This is fine when the domain and codomain are \mathbf{R}, but it's hard to do when they're \mathbf{R}^{2} and \mathbf{R}^{3} ! You need five dimensions to draw that graph.

Matrix Transformations

Definition

Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x
$$

In other words, T takes the vector x in \mathbf{R}^{n} to the vector $A x$ in \mathbf{R}^{m}.
For example, if $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $T(x)=A x$ then

$$
T\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)=\binom{-14}{-32}
$$

(- The domain of T is \mathbf{R}^{n}, which is the number of columns of A.

- The codomain of T is \mathbf{R}^{m}, which is the number of rows of A.
- The range of T is the set of all images of T :

$$
T(x)=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

This is the column span of A. It is a span of vectors in the codomain.

Matrix Transformations

Example

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- If $u=\binom{3}{4}$ then $T(u)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{3}{4}=\left(\begin{array}{l}7 \\ 4 \\ 7\end{array}\right)$.
- Let $b=\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$. Find v in \mathbf{R}^{2} such that $T(v)=b$. Is there more than one?

We want to find v such that $T(v)=A v=b$. We know how to do that:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right) v=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right) \underset{\substack{\text { magmented } \\
\text { matrix }}}{\substack{\text { aumu }}}\left(\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
1 & 1 & 7
\end{array}\right) \underset{\substack{\text { row } \\
\text { roduce }}}{\text { rann }}\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right) .
$$

This gives $x=2$ and $y=5$, or $v=\binom{2}{5}$ (unique). In other words,

$$
T(v)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{2}{5}=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right)
$$

Matrix Transformations

Example, continued

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- Is there any c in \mathbf{R}^{3} such that there is more than one v in \mathbf{R}^{2} with $T(v)=c$?
Translation: is there any c in \mathbf{R}^{3} such that the solution set of $A x=c$ has more than one vector v in it?
The solution set of $A x=c$ is a translate of the solution set of $A x=b$ (from before), which has one vector in it. So the solution set to $A x=c$ has only one vector. So no!
- Find c such that there is no v with $T(v)=c$.

Translation: Find c such that $A x=c$ is inconsistent.
Translation: Find c not in the column span of A (i.e., the range of T).
We could draw a picture, or notice: $a\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+b\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}a+b \\ b \\ a+b\end{array}\right)$. So anything in the column span has the same first and last coordinate. So $c=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is not in the column span (for example).

Matrix Transformations

The picture of a matrix transformation is the same as the pictures we've been drawing all along. Only the language is different. Let

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and let } \quad T(x)=A x
$$

so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Then

$$
T\binom{x}{y}=A\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

which is still is reflection over the y-axis. Picture:

Poll

$$
\text { Let } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and let } T(x)=A x \text {, so } T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} .(T \text { is called a shear.) }
$$

Poll
What does T do to this sheep?
Hint: first draw a picture what it does to the box around the sheep.

Linear Transformations

So, which transformations actually come from matrices?
Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v .
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c v)=c T(v)
$$

Any matrix transformation has to satisfy this property. This property is so special that it has its own name.

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.

In other words, T "respects" addition and scalar multiplication.
Check: if T is linear, then

$$
T(0)=0 \quad T(c u+d v)=c T(u)+d T(v)
$$

for all vectors u, v and scalars c, d. More generally,

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

In engineering this is called superposition.

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. Is T linear? Check:

$$
\begin{aligned}
T(u+v) & =1.5(u+v)=1.5 u+1.5 v=T(u)+T(v) \\
T(c v) & =1.5(c v)=c(1.5 v)=c(T v)
\end{aligned}
$$

So T satisfies the two equations, hence T is linear.
Note: T is a matrix transformation!

$$
T(x)=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right) x
$$

as we checked before.

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
T\binom{x}{y}=\binom{-y}{x}
$$

Is T linear? Check:

$$
\begin{gathered}
T\left(\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}\right)=\binom{-u_{2}}{u_{1}}+\binom{-v_{2}}{v_{1}}=\binom{-\left(u_{2}+v_{2}\right)}{\left(u_{1}+v_{1}\right)}=T\binom{u_{1}+u_{2}}{v_{1}+v_{2}} \\
T\left(c\binom{v_{1}}{v_{2}}\right)=T\binom{c v_{1}}{c v_{2}}=\binom{-c v_{2}}{c v_{1}}=c\binom{-v_{2}}{v_{1}}=c T\binom{v_{1}}{v_{2}} .
\end{gathered}
$$

So T satisfies the two equations, hence T is linear.
Note: T is a matrix transformation!

$$
T(x)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) x
$$

as we checked before.

Linear Transformations

Is every transformation a linear transformation?
No! For instance,

$$
T\binom{x}{y}=\binom{|x|}{y}
$$

is not linear.
Why? We have to check the two defining properties.

$$
T\left(c\binom{x}{y}\right)=\binom{|c x|}{c y} \stackrel{?}{=} c\binom{x}{y}
$$

Not necessarily: if $c=-1$ and $x=1, y=0$, then

$$
\binom{|c x|}{y}=\binom{1}{0} \quad c\binom{x}{y}=\binom{-1}{0}
$$

So T fails the first property.
Conclusion: T is not a matrix transformation!

The Matrix of a Linear Transformation

We will see that a linear transformation T is a matrix transformation: $T(x)=A x$.

But what matrix does T come from? What is A ?

Here's how to compute it.

Unit Coordinate Vectors

Definition

The unit coordinate vectors in \mathbf{R}^{n} are

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Note: if A is an $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, then $A e_{i}=v_{i}$ for $i=1,2, \ldots, n$: multiplying a matrix by e_{i} gives you the i th column.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

Linear Transformations are Matrix Transformations

Recall: A matrix A defines a linear transformation T by $T(x)=A x$.

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

This is an $m \times n$ matrix, and T is the matrix transformation for A : $T(x)=A x$. The matrix A is called the standard matrix for T.

Take-Away
Linear transformations are the same as matrix transformations.

Dictionary

$\begin{gathered}\text { Linear transformation } \\ T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\end{gathered} \quad m \times n$ matrix $A=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\ \mid & \mid & & \mid\end{array}\right)$

$$
T(x)=A x
$$

$$
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}
$$

ғum $m \times n$ matrix A

Linear Transformations are Matrix Transformations

Continued

Why is a linear transformation a matrix transformation?
Suppose for simplicity that $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$.

$$
\begin{aligned}
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =T\left(x\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
& =T\left(x e_{1}+y e_{2}+z e_{3}\right) \\
& =x T\left(e_{1}\right)+y T\left(e_{2}\right)+z T\left(e_{3}\right) \\
& =\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& =A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
\end{aligned}
$$

Linear Transformations are Matrix Transformations

Before, we defined a dilation transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. What is its standard matrix?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=1.5 e_{1}=\binom{1.5}{0} \\
T\left(e_{2}\right)=1.5 e_{2}=\binom{0}{1.5}
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right) .
$$

Check:

$$
\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y}=T\binom{x}{y}
$$

Linear Transformations are Matrix Transformations

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
T(x)=x \text { rotated counterclockwise by an angle } \theta \text { ? }
$$

(Check linearity...)

$\left.\begin{array}{l}T\left(e_{1}\right)=\binom{\cos (\theta)}{\sin (\theta)} \\ T\left(e_{2}\right)=\binom{-\sin (\theta)}{\cos (\theta)}\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right) \quad\left(\begin{array}{c}\theta=90^{\circ} \Longrightarrow \\ A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \\ \text { from before }\end{array}\right)$

Linear Transformations are Matrix Transformations

Example

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{2}\right)=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text {. }
$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{3}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) .
$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Other Geometric Transformations

There is a long list of geometric transformations of \mathbf{R}^{2} in $\S 1.9$ of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, ...) Please look them over.

Onto Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n} : every possible output has an input. Note that not onto means there is some b in \mathbf{R}^{m} which is not the image of any x in \mathbf{R}^{n}.

Characterization of Onto Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- The columns of A span \mathbf{R}^{m}
- A has a pivot in every row

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto, what can we say about the relative sizes of n and m ?
Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every row, it must have at least as many columns as rows: $m \leq n$.

$$
\left(\begin{array}{lllll}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right)
$$

For instance, \mathbf{R}^{2} is "too small" to map onto \mathbf{R}^{3}.

One-to-one Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n} : different inputs have different outputs. Note that not one-to-one means different vectors in \mathbf{R}^{n} have the same image.

Characterization of One-to-One Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}
- $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}
- $A x=0$ has a unique solution
- The columns of A are linearly independent
- A has a pivot in every column.

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one, what can we say about the relative sizes of n and m ?

Answer: T corresponds to an $m \times n$ matrix A. In order for A to have a pivot in every column, it must have at least as many rows as columns: $n \leq m$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For instance, \mathbf{R}^{3} is "too big" to map into \mathbf{R}^{2}.

