Section 2.2

The Inverse of a Matrix

The Definition of Inverse

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that $a b=1$. We define the inverse of a matrix in almost the same way.
Definition
Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that

identity matrix

In this case, B is the inverse of A, and is written A^{-1}.
Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

I claim $B=A^{-1}$. Check:

$$
\begin{aligned}
A B & =\left(\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
B A & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Do there exist two matrices A and B such that $A B$ is the identity, but $B A$ is not? If so, find an example. (Where both products make sense.)

Yes. Take $A=\left(\begin{array}{ll}1 & 0\end{array}\right)$ and $B=\binom{0}{1}$. $A B=0$ yet $B A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
However, if A and B are square matrices, then $A B=I_{n}$ implies $B A=I_{n}$.

The 2×2 case

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The determinant of A is the number

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Facts:

$$
\text { 1. If } \operatorname{det}(A) \neq 0 \text {, then } A \text { is invertible and } A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \text {. }
$$

2. If $\operatorname{det}(A)=0$, then A is not invertible.

Why 1 ?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

So we get the identity by dividing by $a d-b c$.

Example

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=1 \cdot 4-2 \cdot 3=-2 \quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{-1}=-\frac{1}{2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right) .
$$

Solving Linear Systems via Inverses

Solving $A x=b$ by "dividing by A "

Theorem

If A is invertible, then $A x=b$ has exactly one solution for every b, namely:

$$
x=A^{-1} b
$$

Why? "Divide by A " !

$$
\begin{aligned}
& A x=b \text { unи } A^{-1}(A x)=A^{-1} b \text { un } \rightarrow\left(A^{-1} A\right) x=A^{-1} b \\
& \text { mu } \rightarrow I_{n} x=A^{-1} b \text { man } x=A^{-1} b .
\end{aligned}
$$

$I_{n} x=x$ for every

Important

If A is invertible and you know its inverse, then the easiest way to solve $A x=b$ is by "dividing by A ":

$$
x=A^{-1} b
$$

Solving Linear Systems via Inverses

Example

Example

Solve the system

$$
\begin{array}{r}
2 x+3 y+2 z=1 \\
x+3 z=1 \\
2 x+2 y+3 z=1
\end{array} \quad \text { using } \quad\left(\begin{array}{lll}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{array}\right) .
$$

Answer: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3\end{array}\right)^{-1}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{rrr}-6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$.
The advantage of using inverses is it doesn't matter what's on the right-hand side of the $=$:

$$
\left\{\begin{array}{rl}
2 x+3 y+2 z & =b_{1} \\
x+3 z & =b_{2} \\
2 x+2 y+3 z & =b_{3}
\end{array} \Longrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{array}\right)^{-1}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)\right.
$$

Some Facts

Say A and B are invertible $n \times n$ matrices.

1. A^{-1} is invertible and its inverse is $\left(A^{-1}\right)^{-1}=A$.
2. $A B$ is invertible and its inverse is $(A B)^{-1}=A^{-1} B^{-1} \quad B^{-1} A^{-1}$.

Why? $\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} I_{n} B=B^{-1} B=I_{n}$.
3. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Why? $A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I_{n}^{T}=I_{n}$.
Poll
If A, B, C are invertible $n \times n$ matrices, what is the inverse of $A B C$?
i. $A^{-1} B^{-1} C^{-1}$
ii. $B^{-1} A^{-1} C^{-1}$
iii. $C^{-1} B^{-1} A^{-1}$
iv. $C^{-1} A^{-1} B^{-1}$

It's (iii):

$$
\begin{aligned}
(A B C)\left(C^{-1} B^{-1} A^{-1}\right) & =A B\left(C C^{-1}\right) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1} \\
& =A A^{-1}=I_{n}
\end{aligned}
$$

In general, a product of invertible matrices is invertible, and the inverse is the product of the inverses, in the reverse order.

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1}.

1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$.
2. If the result has the form $\left(I_{n} \mid B\right)$, then A is invertible and $B=A^{-1}$.
3. Otherwise, A is not invertible.

Example

$$
A=\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)
$$

[interactive]

Computing A^{-1}

Example

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
R_{3}=R_{3}+3 R_{2} \\
\text { mumumum }
\end{array} \quad\left(\begin{array}{lll|lll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 3 & 1
\end{array}\right) \\
& \begin{array}{l}
\begin{array}{l}
R_{1}=R_{1}-2 R_{3} \\
R_{2}=R_{2}-R_{3} \\
\text { mumumunu }
\end{array} \\
\text { mumu }
\end{array}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 2 & 0 & 3 & 1
\end{array}\right) \\
& \xrightarrow[\text { Ruminnin }]{R_{3}=R_{3} \div 2}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & 3 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

So $\left(\begin{array}{rrr}1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4\end{array}\right)^{-1}=\left(\begin{array}{rrr}1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3 / 2 & 1 / 2\end{array}\right)$.
Check: $\quad\left(\begin{array}{rrr}1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4\end{array}\right)\left(\begin{array}{rrr}1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3 / 2 & 1 / 2\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Why Does This Work?

First answer: We can think of the algorithm as simultaneously solving the equations

$$
\begin{array}{ll}
A x_{1}=e_{1}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{2}=e_{2}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{3}=e_{3}: & \left(\begin{array}{rrr|rll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

Now note $A^{-1} e_{i}=A^{-1}\left(A x_{i}\right)=x_{i}$, and x_{i} is the i th column in the augmented part. Also $A^{-1} e_{i}$ is the i th column of A^{-1}.

Second answer: Elementary matrices.

Elementary Matrices

Definition

An elementary matrix is a square matrix E which differs from I_{n} by one row operation.
There are three kinds, corresponding to the three elementary row operations:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { scaling } \\
\left(R_{2}=2 R_{2}\right)
\end{array} & \begin{array}{c}
\text { row replacement } \\
\left(R_{2}=R_{2}+2 R_{1}\right)
\end{array} & \left(R_{1} \stackrel{\text { swap }}{\longleftrightarrow} R_{2}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Fact: if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.

Example:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 4 \\
2 & 1 & 10 \\
0 & -3 & -4
\end{array}\right)
\end{aligned}
$$

Elementary Matrices

Fact: if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.

Consequence

Elementary matrices are invertible, and the inverse is the elementary matrix which un-does the row operation.

$$
\begin{gathered}
R_{2}=R_{2} \times 2 \\
\left.\left.\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\begin{array}{cc}
R_{2}=R_{2} \div 2 \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \begin{array}{c}
R_{2}=R_{2}+2 R_{1} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=R_{2}-2 R_{1} \\
R_{1} \longleftrightarrow R_{2} \\
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right. \\
0
\end{array}\right)^{-1}=\begin{array}{c}
R_{1} \longleftrightarrow R_{2}
\end{array}\right)
\end{gathered}
$$

Why Does The Inversion Algorithm Work?

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_{n}. In this case, the sequence of row operations taking A to I_{n} also takes I_{n} to A^{-1}.

Why? Say the row operations taking A to I_{n} have elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$. So

$$
\text { note the order! } \begin{aligned}
\longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A & =I_{n} \\
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A A^{-1} & =A^{-1} \\
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} I_{n} & =A^{-1}
\end{aligned}
$$

This means if you do these same row operations to A and to I_{n}, you'll end up with I_{n} and A^{-1}. This is what you do when you row reduce the augmented matrix:

$$
\left(A \mid I_{n}\right) \text { ~u } \rightarrow\left(I_{n} \mid A^{-1}\right)
$$

