Section 2.8

Subspaces of \mathbf{R}^{n}

Motivation

Today we will discuss subspaces of \mathbf{R}^{n}.
A subspace turns out to be the same as a span, except we don't know which vectors it's the span of.
This arises naturally when you have, say, a plane through the origin in \mathbf{R}^{3} which is not defined (a priori) as a span, but you still want to say something about it.

$$
x+3 y+z=0
$$

Definition of Subspace

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

$$
\begin{aligned}
& \text { "not empty" } \\
& \text { "closed under addition" } \\
& \text { "closed under } \times \text { scalars" }
\end{aligned}
$$

Fast-forward

Every subspace is a span, and every span is a subspace.

A subspace is a span of some vectors, but you haven't computed what those vectors are yet.

Definition of Subspace

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

$$
\begin{aligned}
& \text { "not empty" } \\
& \text { "closed under addition" } \\
& \text { "closed under } \times \text { scalars" }
\end{aligned}
$$

What does this mean?

- If v is in V, then all scalar multiples of v are in V by (3). That is, the line through v is in V.
- If u, v are in V, then $x u$ and $y v$ are in V for scalars x, y by (3). So $x u+y v$ is in V by (2). So $\operatorname{Span}\{u, v\}$ is contained in V.
- Likewise, if $v_{1}, v_{2}, \ldots, v_{n}$ are all in V, then $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is contained in V.

A subspace V contains the span of any set of vectors in V.

Examples

Example

A line L through the origin: this contains the span of any vector in L.

Example

A plane P through the origin: this contains the span of any vectors in P.

Example

All of \mathbf{R}^{n} : this contains 0 , and is closed under addition and scalar multiplication.

Example

The subset $\{0\}$: this subspace contains only one vector.
Note these are all pictures of spans! (Line through origin, plane through origin, space through origin, etc.)

Non-Examples

Non-Example
A line L (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example
A circle C is not a subspace. Fails: $1,2,3$. Think: a circle isn't a "linear space."

Non-Example

The first quadrant in \mathbf{R}^{2} is not a subspace. Fails: 3 only.

Non-Example
A line union a plane in \mathbf{R}^{3} is not a subspace. Fails: 2 only.

Subsets and Subspaces

They aren't the same thing

A subset of \mathbf{R}^{n} is any collection of vectors whatsoever.

All of the non-examples are still subsets.

A subspace is a special kind of subset, which satisfies the three defining properties.

Subset: yes
Subspace: no

Spans are Subspaces

Theorem
Any $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a subspace.

!!!

Every subspace is a span, and every span is a subspace.

Definition

If $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we say that V is the subspace generated by or spanned by the vectors $v_{1}, v_{2}, \ldots, v_{n}$.

Check:

1. $0=0 v_{1}+0 v_{2}+\cdots+0 v_{n}$ is in the span.
2. If, say, $u=3 v_{1}+4 v_{2}$ and $v=-v_{1}-2 v_{2}$, then

$$
u+v=3 v_{1}+4 v_{2}-v_{1}-2 v_{2}=2 v_{1}+2 v_{2}
$$

is also in the span.
3. Similarly, if u is in the span, then so is $c u$ for any scalar c.

Subspaces

Let $V=\left\{\binom{a}{b}\right.$ in $\left.\mathbf{R}^{2} \mid a b=0\right\}$. Let's check if V is a subspace or not.

1. Does V contain the zero vector? $\binom{a}{b}=\binom{0}{0} \Longrightarrow a b=0$
2. Is V closed under scalar multiplication?

- Let $\binom{a}{b}$ be in V.
- This means: a and b are numbers such that $a b=0$.
- Let c be a scalar. Is $c\binom{a}{b}=\binom{c a}{c b}$ in V ?
- This means: $(c a)(c b)=0$.
- Well, $(c a)(c b)=c^{2}(a b)=c^{2}(0)=0$

2. Is V closed under addition?

- Let $\binom{a}{b}$ and $\binom{a^{\prime}}{b^{\prime}}$ be in V.
- This means: $a b=0$, and $a^{\prime} b^{\prime}=0$.

- Is $\binom{a}{b}+\binom{a}{b^{\prime}}=\binom{a+a^{\prime}}{b+b^{\prime}}$ in V ?
- This means: $\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)=0$.
- This is not true for all such $a, a^{\prime}, b, b^{\prime}$: for instance, $\binom{1}{0}$ and $\binom{0}{1}$ are in V, but their sum $\binom{1}{0}+\binom{0}{1}=\binom{1}{1}$ is not in V, because $1 \cdot 1 \neq 0$.
We conclude that V is not a subspace. A picture is above. (It doesn't look like a span.)

Column Space and Null Space

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- The column space of A is the subspace of \mathbf{R}^{m} spanned by the columns of A. It is written $\operatorname{Col} A$.
- The null space of A is the set of all solutions of the homogeneous equation $A x=0$:

$$
\operatorname{Nul} A=\left\{x \text { in } \mathbf{R}^{n} \mid A x=0\right\}
$$

This is a subspace of \mathbf{R}^{n}.
The column space is defined as a span, so we know it is a subspace. It is the range (as opposed to the codomain) of the transformation $T(x)=A x$.

Check that the null space is a subspace:

1. 0 is in $\operatorname{Nul} A$ because $A 0=0$.
2. If u and v are in $\operatorname{Nul} A$, then $A u=0$ and $A v=0$. Hence

$$
A(u+v)=A u+A v=0
$$

so $u+v$ is in $\operatorname{Nul} A$.
3. If u is in $\operatorname{Nul} A$, then $A u=0$. For any scalar $c, A(c u)=c A u=0$. So $c u$ is in Nul A.

Column Space and Null Space

Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$.
Let's compute the column space:

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

This is a line in \mathbf{R}^{3}.
Let's compute the null space:

$$
A\binom{x}{y}=\left(\begin{array}{l}
x+y \\
x+y \\
x+y
\end{array}\right)
$$

This zero if and only if $x=-y$. So

$$
\operatorname{Nul} A=\left\{\binom{x}{y} \text { in } \mathbf{R}^{2} \mid y=-x\right\} .
$$

This defines a line in \mathbf{R}^{2} :

The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).
The null space is defined to be the solution set to $A x=0$. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?
Answer: Parametric vector form! We know that the solution set to $A x=0$ has a parametric form that looks like
$x_{3}\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}-2 \\ 3 \\ 0 \\ 1\end{array}\right) \quad \begin{gathered}\text { if, say, } x_{3} \text { and } x_{4} \\ \text { are the free } \\ \text { variables. So }\end{gathered} \quad \operatorname{Nul} A=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 3 \\ 0 \\ 1\end{array}\right)\right\}$.

Refer back to the slides for $\S 1.5$ (Solution Sets).
Note: It is much easier to define the null space first as a subspace, then find spanning vectors later, if we need them. This is one reason subspaces are so useful.

The Null Space is a Span

Example, revisited

Find vector(s) that span the null space of $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$.
The reduced row echelon form is $\left(\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$.
This gives the equation $x+y=0$, or

$$
\begin{aligned}
& x=-y \\
& y=y
\end{aligned} \quad \begin{gathered}
\text { parametric vector form } \\
y m m m m m m m m u m
\end{gathered} \quad\binom{x}{y}=y\binom{-1}{1} .
$$

The null space is

$$
\operatorname{Nul} A=\operatorname{Span}\left\{\binom{-1}{1}\right\}
$$

Subspaces

How do you check if a subset is a subspace?

- Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- Is it all of \mathbf{R}^{n} or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?
If so, then it's automatically a subspace.
If all else fails:
- Can you verify directly that it satisfies the three defining properties?

Basis of a Subspace

What is the smallest number of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

Why is a basis the smallest number of vectors needed to span?
Recall: linearly independent means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't span V.

Important

A subspace has many different bases, but they all have the same number of vectors (see the exercises in §2.9).

Bases of \mathbf{R}^{2}

Question

What is a basis for \mathbf{R}^{2} ?
We need two vectors that span \mathbf{R}^{2} and are linearly independent. $\left\{e_{1}, e_{2}\right\}$ is one basis.

1. They span: $\binom{a}{b}=a e_{1}+b e_{2}$.
2. They are linearly independent because they are not collinear.

Question

What is another basis for \mathbf{R}^{2} ?
Any two nonzero vectors that are not collinear. $\left\{\binom{1}{0},\binom{1}{1}\right\}$ is also a basis.

1. They span: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every row.
2. They are linearly independent: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every column.

Bases of \mathbf{R}^{n}

The unit coordinate vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

are a basis for \mathbf{R}^{n}. The identity matrix has columns $e_{1}, e_{2}, \ldots, e_{n}$.

1. They span: I_{n} has a pivot in every row.
2. They are linearly independent: I_{n} has a pivot in every column.

In general: $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{n} if and only if the matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

has a pivot in every row and every column, i.e. if A is invertible.

Basis of a Subspace

Example

Example

Let

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x+3 y+z=0\right\} \quad \mathcal{B}=\left\{\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)\right\}
$$

Verify that \mathcal{B} is a basis for V.
0 . In V : both vectors are in V because

$$
-3+3(1)+0=0 \quad \text { and } \quad 0+3(1)+(-3)=0
$$

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-\frac{1}{3}(x+z)$, so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{x}{3}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)-\frac{z}{3}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)
$$

2. Linearly independent:

$$
c_{1}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
-3 c_{1} \\
c_{1}+c_{2} \\
-3 c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow c_{1}=c_{2}=0
$$

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to $A x=0$ always form a basis for $\mathrm{Nul} A$.

Example

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) \quad \stackrel{\text { rref }}{\substack{\text { ref }}}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\underset{\substack{\text { parametric } \\
\text { vector } \\
\text { form } \\
\text { mannu } \rightarrow}}{x}=x_{3}\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \xrightarrow{\substack{\text { basis of } \\
\text { Nul } A \\
\text { mmm } \\
\text { m }}}\left\{\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

1. The vectors span Nul A by construction (every solution to $A x=0$ has this form).
2. Can you see why they are linearly independent? (Look at the last two rows.)

Basis for $\operatorname{Col} A$

Fact

The pivot columns of A always form a basis for $\operatorname{Col} A$.

Warning: I mean the pivot columns of the original matrix A, not the row-reduced form. (Row reduction changes the column space.)
Example

$$
A=\left(\begin{array}{rr|rr}
1 \\
-2 & -2 & 0 & -1 \\
2 & 4 & 5 \\
4 & 0 & -2
\end{array}\right) \quad \stackrel{\text { rref }}{\sim m}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivot columns $=$ basis \{nmm~n pivot columns in rref

So a basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\} .
$$

Why? See slides on linear independence.

