Section 2.9

Dimension and Rank

Coefficients of Basis Vectors

Recall: a basis of a subspace V is a set of vectors that spans V and is linearly independent.
Lemma \longleftarrow like a theorem, but less substantial
If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

for unique coefficients $c_{1}, c_{2}, \ldots, c_{m}$.
We know x is a linear combination of the v_{i} because they span V. Suppose that we can write x as a linear combination with different coefficients:

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{m}^{\prime} v_{m}
\end{aligned}
$$

Subtracting:

$$
0=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{m}-c_{m}^{\prime}\right) v_{m}
$$

Since $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent, they only have the trivial linear dependence relation. That means each $c_{i}-c_{i}^{\prime}=0$, or $c_{i}=c_{i}^{\prime}$.

Bases as Coordinate Systems

The unit coordinate vectors $e_{1}, e_{2}, \ldots, e_{n}$ form a basis for \mathbf{R}^{n}. Any vector is a unique linear combination of the e_{i} :

$$
v=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)=3\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=3 e_{1}+5 e_{2}-2 e_{3} .
$$

Observe: the coordinates of v are exactly the coefficients of e_{1}, e_{2}, e_{3}.
We can go backwards: given any basis \mathcal{B}, we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B}.

Definition

Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$. The coefficients $c_{1}, c_{2}, \ldots, c_{m}$ are the coordinates of x with respect to \mathcal{B}. The \mathcal{B}-coordinate vector of x is the vector

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { in } \mathbf{R}^{m}
$$

In other words, a basis allows us to use \mathbf{R}^{m} to label the points of V.

Bases as Coordinate Systems

Example 1

Let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \mathcal{B}=\left\{v_{1}, v_{2}\right\}, \quad V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Verify that \mathcal{B} is a basis:
Span: by definition $V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Linearly independent: because they are not multiples of each other.
Question: If $[w]_{\mathcal{B}}=\binom{5}{2}$, then what is w ? [interactive]

$$
[w]_{\mathcal{B}}=\binom{5}{2} \quad \text { means } \quad w=5 v_{1}+2 v_{2}=5\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
7 \\
2 \\
7
\end{array}\right) .
$$

Question: Find the \mathcal{B}-coordinates of $w=\left(\begin{array}{l}5 \\ 3 \\ 5\end{array}\right)$. [interactive]
We have to solve the vector equation $w=c_{1} v_{1}+c_{2} v_{2}$ in the unknowns c_{1}, c_{2}.

$$
\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
1 & 1 & 5
\end{array}\right) \text { ana }\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) \text { mas }\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

So $c_{1}=2$ and $c_{2}=3$, so $w=2 v_{1}+3 v_{2}$ and $[w]_{\mathcal{B}}=\binom{2}{3}$.

Bases as Coordinate Systems

Let $v_{1}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 8 \\ 6\end{array}\right), \quad V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Question: Find a basis for V. [interactive]
V is the column span of the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 2 \\
3 & 1 & 8 \\
2 & 1 & 6
\end{array}\right) \underset{\text { row reduce }}{\text { mannun }}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) .
$$

A basis for the column span is formed by the pivot columns: $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$.
Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{c}4 \\ 11 \\ 8\end{array}\right)$. [interactive]
We have to solve $x=c_{1} v_{1}+c_{2} v_{2}$.

$$
\left(\begin{array}{rr|r}
2 & -1 & 4 \\
3 & 1 & 11 \\
2 & 1 & 8
\end{array}\right) \xrightarrow[\text { row reduce }]{\text { rownumu }}\left(\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=3 v_{1}+2 v_{2}$ and $[x]_{\mathcal{B}}=\binom{3}{2}$.

Bases as Coordinate Systems

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V and x is in V, then

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { means } \quad x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

Finding the \mathcal{B}-coordinates for x means solving the vector equation

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

in the unknowns $c_{1}, c_{2}, \ldots, c_{m}$. This (usually) means row reducing the augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{m} & x \\
\mid & \mid & & \mid & \mid
\end{array}\right)
$$

Question: What happens if you try to find the \mathcal{B}-coordinates of x not in V ? You end up with an inconsistent system: V is the span of $v_{1}, v_{2}, \ldots, v_{m}$, and if x is not in the span, then $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$ has no solution.

Bases as Coordinate Systems

Let

$$
v_{1}=\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

These form a basis \mathcal{B} for the plane

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}
$$

in \mathbf{R}^{3}.
Question: Estimate the \mathcal{B}-coordinates of these vectors:

$$
\left[u_{1}\right]_{\mathcal{B}}=\binom{1}{1} \quad\left[u_{2}\right]_{\mathcal{B}}=\binom{-1}{\frac{1}{2}} \quad\left[u_{3}\right]_{\mathcal{B}}=\binom{\frac{3}{2}}{-\frac{1}{2}} \quad\left[u_{4}\right]_{\mathcal{B}}=\binom{0}{\frac{3}{2}}
$$

Choosing a basis \mathcal{B} and using \mathcal{B}-coordinates lets us label the points of V with element of \mathbf{R}^{2}.

The Rank Theorem

Recall:

- The dimension of a subspace V is the number of vectors in a basis for V.
- A basis for the column space of a matrix A is given by the pivot columns.
- A basis for the null space of A is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space Col A.

Observe:

$$
\begin{aligned}
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A & =\text { the number of columns with pivots } \\
\operatorname{dim} \operatorname{Nul} A & =\text { the number of free variables } \\
& =\text { the number of columns without pivots. }
\end{aligned}
$$

Rank Theorem

If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A .
$$

The Rank Theorem

Example

$$
A=(\underbrace{\left.\begin{array}{r}
1 \\
-2 \\
2
\end{array} \begin{array}{rrr}
2 \\
-3 \\
4 & 0 & -1 \\
4 & 5 \\
0 & -2
\end{array}\right) \underset{\text { free variables }}{\text { mump }}\left(\begin{array}{llrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 \\
0 & 0 & 0 \\
0 \\
0
\end{array}\right)}_{\text {basis of } \operatorname{Col} A}
$$

A basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

so $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=2$.
Since there are two free variables x_{3}, x_{4}, the parametric vector form for the solutions to $A x=0$ is

$$
x=x_{3}\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right) \underset{\text { annumumis }}{\text { basis for Nul } A}\left\{\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\} .
$$

Thus $\operatorname{dim} \operatorname{Nul} A=2$.
The Rank Theorem says $2+2=4$.

Poll

Poll

Let A and B be 3×3 matrices. Suppose that $\operatorname{rank}(A)=2$ and $\operatorname{rank}(B)=2$. Is it possible that $A B=0$? Why or why not?

If $A B=0$, then $A B x=0$ for every x in \mathbf{R}^{3}.
This means $A(B x)=0$, so $B x$ is in Nul A.
This is true for every x, so $\operatorname{Col} B$ is contained in $\operatorname{Nul} A$.
But $\operatorname{dim} \operatorname{Nul} A=1$ and $\operatorname{dim} \operatorname{Col} B=2$, and a 1-dimensional space can't contain a 2-dimensional space.
Hence it can't happen.

Col B
does not contain

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

Upshot

If you already know that $\operatorname{dim} V=m$, and you have m vectors $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V, then you only have to check one of

1. \mathcal{B} is linearly independent, or
2. \mathcal{B} spans V in order for \mathcal{B} to be a basis.

Example: any three linearly independent vectors form a basis for \mathbf{R}^{3}.

The Invertible Matrix Theorem

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

These are equivalent to the previous conditions by the Rank Theorem and the Basis Theorem.

