Section 5.3

Diagonalization

Motivation

Many real-word linear algebra problems have the form:

$$
v_{1}=A v_{0}, \quad v_{2}=A v_{1}=A^{2} v_{0}, \quad v_{3}=A v_{2}=A^{3} v_{0}, \quad \ldots \quad v_{n}=A v_{n-1}=A^{n} v_{0}
$$

This is called a difference equation.
Our toy example about rabbit populations had this form.
The question is, what happens to v_{n} as $n \rightarrow \infty$?

- Taking powers of diagonal matrices is easy!
- Taking powers of diagonalizable matrices is still easy!
- Diagonalizing a matrix is an eigenvalue problem.

Powers of Diagonal Matrices

If D is diagonal, then D^{n} is also diagonal; its diagonal entries are the nth powers of the diagonal entries of D :

$$
\begin{gathered}
D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), \quad D^{2}=\left(\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right), \quad D^{3}=\left(\begin{array}{cc}
8 & 0 \\
0 & 27
\end{array}\right), \quad \ldots \quad D^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right) . \\
D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right), \quad D^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{9}
\end{array}\right), \quad D^{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{8} & 0 \\
0 & 0 & \frac{1}{27}
\end{array}\right) \\
\ldots \quad D^{n}=\left(\begin{array}{ccc}
(-1)^{n} & 0 & 0 \\
0 & \frac{1}{2^{n}} & 0 \\
0 & 0 & \frac{1}{3^{n}}
\end{array}\right)
\end{gathered}
$$

Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$. Compute A^{n}.
In $\S 5.2$ lecture we saw that A is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { where } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

Then

$$
\begin{aligned}
& A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
& A^{3}=\left(P D P^{-1}\right)\left(P D^{2} P^{-1}\right)=P D\left(P^{-1} P\right) D^{2} P^{-1}=P D I D^{2} P^{-1}=P D^{3} P^{-1}
\end{aligned}
$$

$$
A^{n}=P D^{n} P^{-1}
$$

Therefore

$$
A^{n}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2^{n+1}-3^{n} & -2^{n+1}+2 \cdot 3^{n} \\
2^{n}-3^{n} & -2^{n}+2 \cdot 3^{n}
\end{array}\right)
$$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

If $A=P D P^{-1}$ for $D=\left(\begin{array}{cccc}d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}\end{array}\right)$ then
$A^{k}=P D^{k} P^{-1}=P\left(\begin{array}{cccc}d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}^{k}\end{array}\right) P^{-1}$.

So diagonalizable matrices are easy to raise to any power.

Diagonalization

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary a theorem that follows easily from another theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have n distinct eigenvalues though.

Diagonalization

Problem: Diagonalize $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$.
The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3)
$$

Therefore the eigenvalues are 2 and 3 . Let's compute some eigenvectors:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right) x=0 \stackrel{\text { rref }}{m} \rightarrow\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=2 y$, so $v_{1}=\binom{2}{1}$ is an eigenvector with eigenvalue 2 .

$$
(A-3 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-2 & 2 \\
-1 & 1
\end{array}\right) x=0 \stackrel{\text { rref }}{m \sim}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=y$, so $v_{2}=\binom{1}{1}$ is an eigenvector with eigenvalue 3 .
The eigenvectors v_{1}, v_{2} are linearly independent, so the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

Diagonalization

Another example

Problem: Diagonalize $A=\left(\begin{array}{lll}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$.
The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-1)^{2}(\lambda-2)
$$

Therefore the eigenvalues are 1 and 2 , with respective multiplicities 2 and 1 . Let's compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{lll}
3 & -3 & 0 \\
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right) x=0 \underset{\sim}{\text { rref }}\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric vector form is

$$
\begin{aligned}
& x=y \\
& y=y \\
& z=
\end{aligned} \quad z \quad \Longrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Hence a basis for the 1-eigenspace is

$$
\mathcal{B}_{1}=\left\{v_{1}, v_{2}\right\} \quad \text { where } \quad v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Diagonalization

Problem: Diagonalize $A=\left(\begin{array}{lll}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$.
Now let's compute the 2-eigenspace:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ccc}
2 & -3 & 0 \\
2 & -3 & 0 \\
1 & -1 & -1
\end{array}\right) x=0 \stackrel{\text { rref }}{m \sim}\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=3 z, y=2 z$, so an eigenvector with eigenvalue 2 is

$$
v_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

The eigenvectors v_{1}, v_{2}, v_{3} are linearly independent: v_{1}, v_{2} form a basis for the 1-eigenspace, and v_{3} is not contained in the 1-eigenspace. Therefore the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{lll}
1 & 0 & 3 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Note: In this case, there are three linearly independent eigenvectors, but only two distinct eigenvalues.

Diagonalization

Problem: Show that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.
This is an upper-triangular matrix, so the only eigenvalue is 1 . Let's compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x=0
$$

This is row reduced, but has only one free variable x; a basis for the 1 -eigenspace is $\left\{\binom{1}{0}\right\}$. So all eigenvectors of A are multiples of $\binom{1}{0}$.

Conclusion: A has only one linearly independent eigenvector, so by the "only if" part of the diagonalization theorem, A is not diagonalizable.

Poll

Which of the following matrices are diagonalizable, and why?

$$
\text { A. }\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad \text { B. }\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) \quad \text { C. }\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Matrix A is not diagonalizable: its only eigenvalue is 2 , and its 2-eigenspace is spanned by $\binom{1}{0}$.

Matrix B is diagonalizable because it is a 2×2 matrix with distinct eigenvalues.
Matrix C is already diagonal!

Diagonalization

How to diagonalize a matrix A :

1. Find the eigenvalues of A using the characteristic polynomial.
2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ-eigenspace.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ}, then the matrix is not diagonalizable.
4. Otherwise, the n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in your eigenspace bases are linearly independent, and $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where λ_{i} is the eigenvalue for v_{i}.

Diagonalization

Why is the Diagonalization Theorem true?
A diagonalizable implies A has n linearly independent eigenvectors: Suppose $A=P D P^{-1}$, where D is diagonal with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. They are linearly independent because P is invertible. So $P e_{i}=v_{i}$, hence $P^{-1} v_{i}=e_{i}$.

$$
A v_{i}=P D P^{-1} v_{i}=P D e_{i}=P\left(\lambda_{i} e_{i}\right)=\lambda_{i} P e_{i}=\lambda_{i} v_{i}
$$

Hence v_{i} is an eigenvector of A with eigenvalue λ_{i}. So the columns of P form n linearly independent eigenvectors of A, and the diagonal entries of D are the eigenvalues.
A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let P be the invertible matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. Let $D=P^{-1} A P$.

$$
D e_{i}=P^{-1} A P e_{i}=P^{-1} A v_{i}=P^{-1}\left(\lambda_{i} v_{i}\right)=\lambda_{i} P^{-1} v_{i}=\lambda_{i} e_{i}
$$

Hence D is diagonal, with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Solving $D=P^{-1} A P$ for A gives $A=P D P^{-1}$.

Non-Distinct Eigenvalues

Definition

Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then
$1 \leq($ the geometric multiplicity of $\lambda) \leq($ the algebraic multiplicity of $\lambda)$.
The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1 , then the geometric multiplicity is also 1 .

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

1. A is diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
3. The sum of the algebraic multiplicities of the eigenvalues of A equals n, and the geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

Non-Distinct Eigenvalues

Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1 , hence so does the geometric multiplicity, and therefore A is diagonalizable.
For example, $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$ has eigenvalues 2 and 3 , so it is diagonalizable.

Example

The matrix $A=\left(\begin{array}{ccc}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$ has characteristic polynomial

$$
f(\lambda)=-(\lambda-1)^{2}(\lambda-2) .
$$

The algebraic multiplicities of 1 and 2 are 2 and 1 , respectively. They sum to 3 . We showed before that the geometric multiplicity of 1 is 2 (the 1 -eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1 . Hence the geometric multiplicities add up to 3 , so A is diagonalizable.

Non-Distinct Eigenvalues

Another example

Example

The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has characteristic polynomial $f(\lambda)=(\lambda-1)^{2}$.
It has one eigenvalue 1 of algebraic multiplicity 2 .
We showed before that the geometric multiplicity of 1 is 1 (the 1 -eigenspace has dimension 1).
Since the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is not diagonalizable.

Applications to Difference Equations

Let $D=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right)$.
Fix a vector v_{0}, and let $v_{1}=D v_{0}, v_{2}=D v_{1}$, etc., so $v_{n}=D^{n} v_{0}$.

Question: What happens to the v_{i} 's for different choices of v_{0} ?
Answer: Note that D is diagonal, so

$$
D^{n}\binom{a}{b}=\left(\begin{array}{cc}
1^{n} & 0 \\
0 & 1 / 2^{n}
\end{array}\right)\binom{a}{b}=\binom{a}{b / 2^{n}}
$$

So the x-coordinate of v_{n} equals the x-coordinate of v_{0}, and the y-coordinate gets halved every time.

Applications to Difference Equations

Picture

$$
D\binom{a}{b}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)\binom{a}{b}=\binom{a}{b / 2}
$$

So all vectors get "sucked into the x-axis," which is the 1-eigenspace.

Applications to Difference Equations

Let $A=\left(\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right)$.
Fix a vector v_{0}, and let $v_{1}=A v_{0}, v_{2}=A v_{1}$, etc., so $v_{n}=A^{n} v_{0}$.
Question: What happens to the v_{i} 's for different choices of v_{0} ?
Answer: We want to compute powers of A, so this is a diagonalization question. The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2}=(\lambda-1)\left(\lambda-\frac{1}{2}\right)
$$

We compute eigenvectors with eigenvalues 1 and $1 / 2$ to be, respectively,

$$
w_{1}=\binom{1}{1} \quad w_{2}=\binom{1}{-1}
$$

Therefore, $\quad A=P D P^{-1} \quad$ for $\quad P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \quad D=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right)$.
This is the same matrix D from before. Hence

$$
v_{n}=A^{n} v_{0}=P D^{n} P^{-1} v_{0}
$$

Applications to Difference Equations

Recall: $A^{n}=P D^{n} P^{-1}$ acts on the usual coordinates of v_{0} in the same way that D^{n} acts on the \mathcal{B}-coordinates, where $\mathcal{B}=\left\{w_{1}, w_{2}\right\}$.

So all vectors get "sucked into the 1-eigenspace."

