Section 6.2/6.3

Orthogonal Projections

Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the closest point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W : it is in the orthogonal complement W^{\perp}.

Orthogonal Decomposition

Recall:

- If W is a subspace of \mathbf{R}^{n}, its orthogonal complement is

$$
W^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \text { is perpendicular to every vector in } W\right\}
$$

- $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n$.

Theorem
Every vector x in \mathbf{R}^{n} can be written as

$$
x=x_{w}+x_{w \perp}
$$

for unique vectors x_{W} in W and $x_{W \perp}$ in W^{\perp}.
The equation $x=x_{W}+x_{W \perp}$ is called the orthogonal decomposition of x (with respect to W).

The vector x_{W} is the closest vector to x on W. [interactive 1] [interactive 2]

Orthogonal Decomposition

Justification

Theorem

Every vector x in \mathbf{R}^{n} can be written as

$$
x=x_{w}+x_{w \perp}
$$

for unique vectors x_{W} in W and $x_{W \perp}$ in W^{\perp}.

Why?

Uniqueness: suppose $x=x_{W}+x_{W \perp}=x_{W}^{\prime}+x_{W \perp}^{\prime}$ for x_{W}, x_{W}^{\prime} in W and $x_{W \perp}, x_{W \perp}^{\prime}$ in W^{\perp}. Rewrite:

$$
x_{W}-x_{W}^{\prime}=x_{W \perp}^{\prime}-x_{W \perp}
$$

The left side is in W, and the right side is in W^{\perp}, so they are both in $W \cap W^{\perp}$. But the only vector that is perpendicular to itself is the zero vector! Hence

$$
\begin{gathered}
0=x_{W}-x_{W}^{\prime} \Longrightarrow x_{W}=x_{W}^{\prime} \\
0=x_{W \perp}-x_{W \perp}^{\prime} \Longrightarrow x_{W \perp}=x_{W}
\end{gathered}
$$

Existence: We will compute the orthogonal decomposition later using orthogonal projections.

Orthogonal Decomposition

Example

Let W be the $x y$-plane in \mathbf{R}^{3}. Then W^{\perp} is the z-axis.

$$
\begin{array}{ll}
x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \Longrightarrow x_{W}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) & x_{W \perp}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) . \\
x=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Longrightarrow x_{W}=\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right) & x_{W \perp}=\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right) .
\end{array}
$$

This is just decomposing a vector into a "horizontal" component (in the $x y$-plane) and a "vertical" component (on the z-axis).

Orthogonal Decomposition

Problem: Given x and W, how do you compute the decomposition $x=x_{W}+x_{W \perp}$?
Observation: It is enough to compute x_{W}, because $x_{W \perp}=x-x_{W}$.
First we need to discuss orthogonal sets.

Definition

A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if, in addition, each vector is a unit vector.

Lemma

An orthogonal set of vectors is linearly independent. Hence it is a basis for its span.

Suppose $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is orthogonal. We need to show that the equation

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}=0
$$

has only the trivial solution $c_{1}=c_{2}=\cdots=c_{m}=0$.

$$
0=u_{1} \cdot\left(c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)+0+0+\cdots+0 .
$$

Hence $c_{1}=0$. Similarly for the other c_{i}.

Orthogonal Sets

Examples

Example: $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ is an orthogonal set. Check:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=0 \quad\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 \quad\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 .
$$

Example: $\mathcal{B}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthogonal set. Check:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0 \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0 \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0 .
$$

Example: Let $x=\binom{a}{b}$ be a nonzero vector, and let $y=\binom{-b}{a}$. Then $\{x, y\}$ is an orthogonal set:

$$
\binom{a}{b} \cdot\binom{-b}{a}=-a b+a b=0 .
$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{W}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}
$$

This is a vector in W because it is in $\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$.

Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then

$$
x_{W}=\operatorname{proj}_{W}(x) \quad \text { and } \quad x_{W \perp}=x-\operatorname{proj}_{w}(x) .
$$

In particular, $\operatorname{proj}_{W}(x)$ is the closest point to x in W.
Why? Let $y=\operatorname{proj}_{W}(x)$. We need to show that $x-y$ is in W^{\perp}. In other words, $u_{i} \cdot(x-y)=0$ for each i. Let's do u_{1} :
$u_{1} \cdot(x-y)=u_{1} \cdot\left(x-\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}\right)=u_{1} \cdot x-\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}\left(u_{1} \cdot u_{1}\right)-0-\cdots=0$.

Orthogonal Projection onto a Line

The formula for orthogonal projections is simple when W is a line.
Let $L=\operatorname{Span}\{u\}$ be a line in \mathbf{R}^{n}, and let x be in \mathbf{R}^{n}. The orthogonal projection of x onto L is the point

$$
\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u
$$

[interactive]

Example: Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by $u=\binom{3}{2}$.
$y=\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2}$.

Orthogonal Projection onto a Plane

Easy example

What is the projection of $x=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ onto the $x y$-plane?
Answer: The $x y$-plane is $W=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$, and $\left\{e_{1}, e_{2}\right\}$ is an orthogonal basis.

$$
x_{W}=\operatorname{proj}_{W}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\frac{x \cdot e_{1}}{e_{1} \cdot e_{1}} e_{1}+\frac{x \cdot e_{2}}{e_{2} \cdot e_{2}} e_{2}=\frac{1 \cdot 1}{1^{2}} e_{1}+\frac{1 \cdot 2}{1^{2}} e_{2}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

So this is the same projection as before.

Orthogonal Projections

More complicated example
What is the projection of $x=\left(\begin{array}{c}-1.1 \\ 1.4 \\ 1.45\end{array}\right)$ onto $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1.1 \\ -.2\end{array}\right)\right\}$?
Answer: The basis is orthogonal, so

$$
\begin{aligned}
x_{W} & =\operatorname{proj}_{W}\left(\begin{array}{c}
-1.1 \\
1.4 \\
1.45
\end{array}\right)=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} \\
& =\frac{(-1.1)(1)}{1^{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{(1.4)(1.1)+(1.45)(-.2)}{1.1^{2}+(-.2)^{2}}\left(\begin{array}{c}
0 \\
1.1 \\
-.2
\end{array}\right)
\end{aligned}
$$

This turns out to be equal to $u_{2}-1.1 u_{1}$.

Orthogonal Projections

Properties

First we restate the property we've been using all along.

Best Approximation Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $y=\operatorname{proj}_{W}(x)$ is the closest point in W to x, in the sense that

$$
\operatorname{dist}\left(x, y^{\prime}\right) \geq \operatorname{dist}(x, y) \quad \text { for all } \quad y^{\prime} \text { in } W
$$

We can think of orthogonal projection as a transformation:

$$
\operatorname{proj}_{w}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad x \mapsto \operatorname{proj}_{w}(x)
$$

Theorem

Let W be a subspace of \mathbf{R}^{n}.

1. proj_{W} is a linear transformation.
2. For every x in W, we have $\operatorname{proj}_{W}(x)=x$.
3. For every x in W^{\perp}, we have $\operatorname{proj}_{W}(x)=0$.
4. The range of proj_{W} is W and the null space of proj_{W} is W^{\perp}.

Poll

Let W be a subspace of \mathbf{R}^{n}, and assume W is not the zero subspace.
Poll
Let A be the matrix for proj_{W}. What is/are the possible eigenvalue(s) of A ? Circle all that apply.
A. 0
B. 1
C. -1
D. 2
E. -2

The 1-eigenspace is W.
The 0-eigenspace is W^{\perp}. (as long as $W \neq \mathbf{R}^{n}$).
Therefore, the correct answer is: A and B.

Orthogonal Projections

Matrices

What is the matrix for $\operatorname{proj}_{W}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, where

$$
W=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} ?
$$

Answer: Recall how to compute the matrix for a linear transformation:

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{proj}_{W}\left(e_{1}\right) & \operatorname{proj}_{W}\left(e_{2}\right) & \operatorname{proj}_{W}\left(e_{3}\right)
\end{array}\right) .
$$

We compute:

$$
\begin{aligned}
& \operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=0+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{3}\right)=\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=-\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 6 \\
1 / 3 \\
5 / 6
\end{array}\right)
\end{aligned}
$$

Therefore $A=\left(\begin{array}{ccc}5 / 6 & 1 / 3 & -1 / 6 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ -1 / 6 & 1 / 3 & 5 / 6\end{array}\right)$.

Coordinates with respect to Orthogonal Bases

Let W be a subspace with orthogonal basis $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$.
For x in W we have $\operatorname{proj}_{W}(x)=x$, so

$$
x=\operatorname{proj}_{W}(x)=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}
$$

This makes it easy to compute the \mathcal{B}-coordinates of x.
Corollary
Let W be a subspace with orthogonal basis $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Then

$$
[x]_{\mathcal{B}}=\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}}\right)
$$

[interactive]

Coordinates with respect to Orthogonal Bases

Example

Problem: Find the \mathcal{B}-coordinates of $x=\binom{0}{3}$, where

$$
\mathcal{B}=\left\{\binom{1}{2},\binom{-4}{2}\right\} .
$$

Old way:

$$
\left(\begin{array}{rr|r}
1 & -4 & 0 \\
2 & 2 & 3
\end{array}\right) \stackrel{\text { rref }}{\sim \sim}\left(\begin{array}{ll|r}
1 & 0 & 6 / 5 \\
0 & 1 & 6 / 20
\end{array}\right) \Longrightarrow[x]_{\mathcal{B}}=\binom{6 / 5}{6 / 20} .
$$

New way: note \mathcal{B} is an orthogonal basis.

$$
[x]_{\mathcal{B}}=\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}\right)=\left(\frac{3 \cdot 2}{1^{2}+2^{2}}, \frac{3 \cdot 2}{(-4)^{2}+2^{2}}\right)=\left(\frac{6}{5}, \frac{3}{10}\right) .
$$

[interactive]

Orthogonal Projections

Let W be an m-dimensional subspace $(1 \leq m<n)$ of \mathbf{R}^{n}, let $\operatorname{proj}_{W}: \mathbf{R}^{n} \rightarrow W$ be the projection, and let A be the matrix for proj_{L}.

Fact 1: A is diagonalizable with eigenvalues 0 and 1 ; it is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal.

Why? Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_{n}$ be a basis for W^{\perp}. These are (linearly independent) eigenvectors with eigenvalues 1 and 0 , respectively, and they form a basis for \mathbf{R}^{n} because there are n of them.

Example: If W is a plane in \mathbf{R}^{3}, then A is similar to projection onto the $x y$-plane:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Fact 2: $A^{2}=A$.
Why? Projecting twice is the same as projecting once:

$$
\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W} \Longrightarrow A \cdot A=A .
$$

Orthogonal Projections

What is the distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$?
Answer: The closest point on W to e_{1} is $\operatorname{proj}_{W}\left(e_{1}\right)=\left(\begin{array}{c}5 / 6 \\ 1 / 3 \\ -1 / 6\end{array}\right)$.
The distance from e_{1} to this point is

$$
\begin{aligned}
\operatorname{dist} & \left(e_{1}, \operatorname{proj}_{W}\left(e_{1}\right)\right)=\left\|\left(e_{1}\right)_{W \perp}\right\| \\
& =\left\|\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{c}
1 / 6 \\
-1 / 3 \\
1 / 6
\end{array}\right)\right\| \\
& =\sqrt{(1 / 6)^{2}+(-1 / 3)^{2}+(1 / 6)^{2}} \\
& =\frac{1}{\sqrt{6}} .
\end{aligned}
$$

