Section 6.5

Least Squares Problems

Motivation

We now are in a position to solve the motivating problem of this third part of the course:

Problem

Suppose that Ax = b does not have a solution. What is the best possible approximate solution?

To say Ax = b does not have a solution means that b is not in Col A.

The closest possible \widehat{b} for which $Ax = \widehat{b}$ does have a solution is $\widehat{b} = \operatorname{proj}_{\operatorname{Col} A}(b)$.

Then $A\widehat{\mathbf{x}} = \widehat{\mathbf{b}}$ is a consistent equation.

A solution \widehat{x} to $A\widehat{x} = \widehat{b}$ is a **least squares solution.**

Least Squares Solutions

Let A be an $m \times n$ matrix.

Definition

A **least squares solution** of Ax = b is a vector \hat{x} in \mathbb{R}^n such that

$$||b - A\widehat{x}|| \le ||b - Ax||$$

for all x in \mathbb{R}^n .

In other words, a least squares solution \hat{x} solves Ax = b as closely as possible.

Equivalently, a least squares solution to Ax = b is a vector \hat{x} in \mathbf{R}^n such that

$$A\widehat{x} = \widehat{b} = \operatorname{proj}_{\operatorname{Col} A}(b).$$

This is because \hat{b} is the closest vector to b such that $A\hat{x} = \hat{b}$ is consistent.

Theorem

The least squares solutions to Ax = b are the solutions to

$$(A^T A)\widehat{x} = A^T b.$$

This is just another Ax = b problem, but with a *square* matrix $A^TA!$ Note we compute \widehat{x} directly, without computing \widehat{b} first.

Why is this true?

- We want to find \hat{x} such that $A\hat{x} = \text{proj}_{Col A}(b)$.
- ▶ This means $b A\hat{x}$ is in $(\operatorname{Col} A)^{\perp}$.
- ▶ Recall that $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^{T})$.
- ▶ So $b A\hat{x}$ is in $(\text{Col } A)^{\perp}$ if and only if $A^{T}(b A\hat{x}) = 0$.
- ▶ In other words, $A^T A \hat{x} = A^T b$.

Alternative when A has orthogonal columns v_1, v_2, \ldots, v_n :

$$\widehat{b} = \operatorname{proj}_{\operatorname{Col} A}(b) = \sum_{i=1}^{n} \frac{b \cdot v_i}{v_i \cdot v_i} v_i$$

The right hand side equals $A\widehat{x}$, where $\widehat{x} = \left(\frac{b \cdot v_1}{v_1 \cdot v_1}, \frac{b \cdot v_2}{v_2 \cdot v_2}, \cdots, \frac{b \cdot v_n}{v_n \cdot v_n}\right)$.

Find the least squares solutions to Ax = b where:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

We have

$$A^{\mathsf{T}}A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$$

and

$$A^{\mathsf{T}}b = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}.$$

Row reduce:

$$\begin{pmatrix} 3 & 3 & | & 6 \\ 3 & 5 & | & 0 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & | & 5 \\ 0 & 1 & | & -3 \end{pmatrix}.$$

So the only least squares solution is $\widehat{x} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$.

Least Squares Solutions

Example, continued

How close did we get?

$$\widehat{b} = A\widehat{x} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$

The distance from b is

$$||b - A\widehat{x}|| = \left\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6}.$$

Let

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

 $\widehat{b} = A \begin{pmatrix} 5 \\ -3 \end{pmatrix} \quad \text{be the columns of } A, \text{ and let} \\ \mathcal{B} = \{v_1, v_2\}.$

Note $\widehat{x} = {5 \choose -3}$ is just the \mathcal{B} -coordinates of \widehat{b} , in Col $A = \text{Span}\{v_1, v_2\}$.

Least Squares Solutions Second example

Find the least squares solutions to Ax = b where:

$$A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

We have

$$A^{T}A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$$

and

$$A^{\mathsf{T}}b = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

Row reduce:

$$\begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & -2 \end{pmatrix} \xrightarrow{\text{\tiny NNNY}} \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \end{pmatrix}.$$

So the only least squares solution is $\widehat{x} = \begin{pmatrix} 1/3 \\ -1/3 \end{pmatrix}$. [interactive]

Least Squares Solutions Uniqueness

When does Ax = b have a *unique* least squares solution \hat{x} ?

Theorem

Let A be an $m \times n$ matrix. The following are equivalent:

- 1. Ax = b has a *unique* least squares solution for all b in \mathbb{R}^n .
- 2. The columns of A are linearly independent.
- 3. $A^T A$ is invertible.

In this case, the least squares solution is $(A^TA)^{-1}(A^Tb)$.

Why? If the columns of A are linearly dependent, then $A\widehat{x} = \widehat{b}$ has many solutions:

Note: $A^T A$ is always a square matrix, but it need not be invertible.

Find the best fit line through (0,6), (1,0), and (2,0).

The general equation of a line is

$$y = C + Dx$$
.

So we want to solve:

$$6 = C + D \cdot 0$$

$$0=C+D\cdot 1$$

$$0=C+D\cdot 2.$$

In matrix form:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

We already saw: the least squares solution is $\binom{5}{-3}$. So the best fit line is

$$y=-3x+5.$$

[interactive]

$$A \begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Poll

What does the best fit line minimize?

- A. The sum of the squares of the distances from the data points to the line.
- B. The sum of the squares of the vertical distances from the data points to the line.
- C. The sum of the squares of the horizontal distances from the data points to the line.
- D. The maximal distance from the data points to the line.

Answer: B. See the picture on the previous slide.

Application Best fit ellipse

Find the best fit ellipse for the points (0,2), (2,1), (1,-1), (-1,-2), (-3,1), (-1,-1).

The general equation for an ellipse is

$$x^2 + Ay^2 + Bxy + Cx + Dy + E = 0$$

So we want to solve:

$$(0)^{2} + A(2)^{2} + B(0)(2) + C(0) + D(2) + E = 0$$

$$(2)^{2} + A(1)^{2} + B(2)(1) + C(2) + D(1) + E = 0$$

$$(1)^{2} + A(-1)^{2} + B(1)(-1) + C(1) + D(-1) + E = 0$$

$$(-1)^{2} + A(-2)^{2} + B(-1)(-2) + C(-1) + D(-2) + E = 0$$

$$(-3)^{2} + A(1)^{2} + B(-3)(1) + C(-3) + D(1) + E = 0$$

$$(-1)^{2} + A(-1)^{2} + B(-1)(-1) + C(-1) + D(-1) + E = 0$$

In matrix form:

$$\begin{pmatrix} 4 & 0 & 0 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 4 & 2 & -1 & -2 & 1 \\ 1 & -3 & -3 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \\ -1 \\ -1 \\ -9 \\ -1 \end{pmatrix}.$$

Application

Best fit ellipse, continued

$$A = \begin{pmatrix} 4 & 0 & 0 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 4 & 2 & -1 & -2 & 1 \\ 1 & -3 & -3 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ -4 \\ -1 \\ -1 \\ -9 \\ -1 \end{pmatrix}.$$

$$A^{T}A = \begin{pmatrix} 36 & 7 & -5 & 0 & 12 \\ 7 & 19 & 9 & -5 & 1 \\ -5 & 9 & 16 & 1 & -2 \\ 0 & -5 & 1 & 12 & 0 \\ 12 & 1 & -2 & 0 & 6 \end{pmatrix} \qquad A^{T}b = \begin{pmatrix} -19 \\ 17 \\ 20 \\ -9 \\ -16 \end{pmatrix}$$

Row reduce:

Best fit ellipse:

$$x^{2} + \frac{405}{266}y^{2} - \frac{89}{133}xy + \frac{201}{133}x - \frac{123}{266}y - \frac{687}{133} = 0$$

or

$$266x^2 + 405y^2 - 178xy + 402x - 123y - 1374 = 0.$$

Application
Best fit ellipse, picture

Remark: Gauss invented the method of least squares to do exactly this: he predicted the (elliptical) orbit of the asteroid Ceres as it passed behind the sun in 1801.

Application Best fit parabola

What least squares problem Ax = b finds the best parabola through the points (-1,0.5), (1,-1), (2,-0.5), (3,2)?

The general equation for a parabola is

$$y = Ax^2 + Bx + C.$$

So we want to solve:

$$0.5 = A(-1)^{2} + B(-1) + C$$

$$-1 = A(1)^{2} + B(1) + C$$

$$-0.5 = A(2)^{2} + B(2) + C$$

$$2 = A(3)^{2} + B(3) + C$$

In matrix form:

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 0.5 \\ -1 \\ -0.5 \\ 2 \end{pmatrix}.$$

Answer:
$$88y = 53x^2 - \frac{379}{5}x - 82$$

Application Best fit parabola, picture

Application

Best fit linear function

What least squares problem Ax = b finds the best linear function f(x, y) fitting the following data?

The general equation for a linear function in two variables is

$$f(x,y)=Ax+By+C.$$

So we want to solve

$$A(1) + B(0) + C = 0$$

 $A(0) + B(1) + C = 1$
 $A(-1) + B(0) + C = 3$
 $A(0) + B(-1) + C = 4$

In matrix form:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix}.$$

$$f(x,y) = -\frac{3}{2}x - \frac{3}{2}y + 2$$

$$\begin{array}{c|ccccc} x & y & f(x,y) \\ \hline 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3 \\ 0 & -1 & 4 \\ \hline \end{array}$$

Graph of $f(x,y) = -\frac{3}{2}x - \frac{3}{2}y + 2$

Summary

- ▶ A least squares solution of Ax = b is a vector \widehat{x} such that $\widehat{b} = A\widehat{x}$ is as close to b as possible.
- ▶ This means that $\hat{b} = \operatorname{proj}_{\operatorname{Col} A}(b)$.
- One way to compute a least squares solution is by solving the system of equations

$$(A^T A)\widehat{x} = A^T b.$$

Note that $A^T A$ is a (symmetric) square matrix.

- ▶ Least-squares solutions are unique when the columns of *A* are linearly independent.
- You can use least-squares to find best-fit lines, parabolas, ellipses, planes, etc.