## Math 1553 Worksheet §1.3, interactive supplement

Solutions
If you don't have a computer, find someone who does.

1. Let $v_{1}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) \quad v_{2}=\left(\begin{array}{c}-2 \\ -3 \\ -1\end{array}\right) \quad w=\left(\begin{array}{c}2 \\ -4 \\ 8\end{array}\right)$.

Question: Is $w$ a linear combination of $v_{1}$ and $v_{2}$ ? In other words, is $w$ in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ ?
a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) Formulate this question as an augmented matrix.
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

## Solution.

a) Does the following vector equation have a solution?

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
8
\end{array}\right)
$$

b) Does the following linear system have a solution?

$$
\begin{aligned}
2 x-2 y & =2 \\
x-3 y & =-4 \\
3 x-y & =8
\end{aligned}
$$

c) As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & -2 & 2 \\
1 & -3 & -4 \\
3 & -1 & 8
\end{array}\right)
$$

e) Row reducing yields

$$
\left(\begin{array}{ll|r}
1 & 0 & 7 / 2 \\
0 & 1 & 5 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

so $x=7 / 2$ and $y=5 / 2$.
2. Consider the system of linear equations

$$
\begin{array}{r}
x+2 y= \\
2 x+y=-2 \\
-x-y=4
\end{array}
$$

Question: Does this system have a solution? If so, what is the solution set?
a) Formulate this question as an augmented matrix.
b) Formulate this question as a vector equation.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

## Solution.

a) As an augmented matrix:

$$
\left(\begin{array}{rr|r}
1 & 2 & 7 \\
2 & 1 & -2 \\
-1 & -1 & 4
\end{array}\right)
$$

b) What are the solutions to the following vector equation?

$$
x\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+y\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
7 \\
-2 \\
4
\end{array}\right)
$$

c) There exists a solution if and only if $\left(\begin{array}{c}7 \\ -2 \\ 4\end{array}\right)$ in the span of $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$.
e) Row reducing yields

$$
\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

so there are no solutions. (This should be obvious from the picture in (d)).
3. Consider the vector equation

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right)+z\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{l}
-5 \\
-1 \\
-2
\end{array}\right)
$$

Question: Is there a solution? If so, what is the solution set?
a) Formulate this question as an augmented matrix.
b) Formulate this question as a system of linear equations.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

## Solution.

a) As an augmented matrix:

$$
\left(\begin{array}{lll|l}
2 & -2 & 3 & -5 \\
1 & -1 & 0 & -1 \\
3 & -1 & 4 & -2
\end{array}\right)
$$

b) What is the solution set of the following linear system?

$$
\begin{aligned}
2 x-2 y+3 z & =-5 \\
x-y & =-1 \\
3 x-y+4 z & =-2
\end{aligned}
$$

c) There exists a solution if and only if $\left(\begin{array}{l}-5 \\ -1 \\ -2\end{array}\right)$ is in $\operatorname{Span}\left\{\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)\right\}$.
e) Row reducing yields

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 / 2 \\
0 & 1 & 0 & 5 / 2 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

so $x=3 / 2, y=5 / 2$, and $z=-1$.
4. Consider the augmented matrix

$$
\left(\begin{array}{rrr|r}
2 & -2 & 2 & 0 \\
1 & -3 & -4 & -9 \\
3 & -1 & 8 & 9
\end{array}\right)
$$

Question: Does the corresponding linear system have a solution? If so, what is the solution set?
a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.
f) Find a different solution in parts (e) and (d).

## Solution.

a) What are the solutions to the following vector equation?

$$
x\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+y\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right)+z\left(\begin{array}{c}
2 \\
-4 \\
8
\end{array}\right)=\left(\begin{array}{c}
0 \\
-9 \\
9
\end{array}\right)
$$

b) What is the solution set of the following linear system?

$$
\begin{aligned}
2 x-2 y+2 z= & 0 \\
x-3 y-4 z= & -9 \\
3 x-y+8 z= & 9
\end{aligned}
$$

c) There exists a solution if and only if $\left(\begin{array}{c}0 \\ -9 \\ 9\end{array}\right)$ is in $\operatorname{Span}\left\{\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ -4 \\ 8\end{array}\right)\right\}$.
e) Row reducing yields

$$
\left(\begin{array}{rrr|r}
1 & 0 & 7 / 2 & 9 / 2 \\
0 & 1 & 5 / 2 & 9 / 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence $z$ is a free variable, so the solution in parametric form is

$$
\begin{aligned}
& x=\frac{9}{2}-\frac{7}{2} z \\
& y=\frac{9}{2}-\frac{5}{2} z .
\end{aligned}
$$

Taking $z=0$ yields the solution $x=y=9 / 2$.
f) Taking $z=1$ yields the solution $x=1, y=2$.
5. Decide if each of the following statements is true or false. If it is true, prove it; if it is false, provide a counterexample.
a) Every set of four or more vectors in $\mathbf{R}^{3}$ will span $\mathbf{R}^{3}$.
b) The span of any set contains the zero vector.

## Solution.

a) This is false. For instance, the vectors

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)\right\}
$$

only span the $x$-axis.
b) This is true. We have

$$
0=0 \cdot v_{1}+0 \cdot v_{2}+\cdots+0 \cdot v_{p}
$$

Aside: the span of the empty set is equal to $\{0\}$, because 0 is the empty sum, i.e. the sum with no summands. Indeed, if you add the empty sum to a vector $v$, you get $v+$ (no other summands), which is just $v$; and the only vector which gives you $v$ when you add it to $v$, is 0 . (If you find this argument intriguing, you might want to consider taking abstract math courses later on.)

