Math 1553 Worksheet §2.8 (and some 2.9)

1. Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$

Solution.

Finding a basis for Nul A means finding the parametric vector form of the solution to Ax = 0. First we row reduce:

$$\begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 5 & -6 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

so x_3, x_4, x_5 are free, and

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5x_3 + 6x_4 - x_5 \\ 3x_3 - x_4 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore, a basis for Nul A is $\left\{ \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$

To find a basis for Col *A*, we use the pivot columns as they were written in the *original* matrix *A*, *not its RREF*. These are the first two columns:

$$\left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \right\}.$$

2. Consider the following vectors in \mathbb{R}^3 :

$$b_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \qquad u = \begin{pmatrix} 1 \\ 10 \\ 7 \end{pmatrix}$$

Let $V = \operatorname{Span}\{b_1, b_2\}.$

- a) Explain why $\mathcal{B} = \{b_1, b_2\}$ is a basis for V.
- **b)** Determine if u is in V.
- c) Find a vector b_3 such that $\{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .

Solution.

- a) A quick check shows that b_1 and b_2 are linearly independent (verify!), and we already know they span V, so $\{b_1, b_2\}$ is a basis for V.
- **b)** u is in V if and only if $c_1b_1+c_2b_2=u$ for some c_1 and c_2 (in which case $[u]_{\mathcal{B}}=\begin{pmatrix}c_1\\c_2\end{pmatrix}$ looking ahead to problem 5(b)). We form the augmented matrix $\begin{pmatrix}b_1&b_2\mid u\end{pmatrix}$ and see if the system is consistent.

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 10 \\ 2 & 3 & 7 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 9 \\ 0 & 2 & 6 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

The right column is not a pivot column, so the system is consistent, therefore u is in Span $\{b_1, b_2\}$: in fact, $u = -b_1 + 3b_2$.

c) If we choose b_3 which is not in Span $\{b_1, b_2\}$, then $\{b_1, b_2, b_3\}$ is linearly independent by the increasing span criterion. Any three linearly independent vectors span \mathbb{R}^3 : the matrix with columns b_1, b_2, b_3 is square, so if there is a pivot in every column, then there is a pivot in every row.

We could choose
$$b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, since $\begin{pmatrix} b_1 & b_2 \mid b_3 \end{pmatrix}$ is inconsistent:

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 0 \\ 2 & 3 & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & -1/3 \end{pmatrix}.$$

- **3.** For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
 - a) If A is an $n \times n$ matrix and Col $A = \mathbb{R}^n$, then Ax = 0 has a nontrivial solution.
 - **b)** If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m .
 - c) Give an example of 2×2 matrix whose column space is the same as its null space.

Solution.

- a) No. Since $Col(A) = \mathbb{R}^n$, the linear transformation T(x) = Ax from \mathbb{R}^n to \mathbb{R}^n is onto, hence T is one-to-one, so Ax = 0 has only the trivial solution.
- **b)** Maybe. If Ax = 0 has only the trivial solution and m = n, then A is invertible, so the columns of A are linearly independent and span \mathbf{R}^m .

If m > n then the statement is false. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ has only the

trivial solution for Ax = 0, but its columns form only a 2-plane within \mathbb{R}^3 .

c) Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Its null space and column space are Span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

4. In each case, determine whether the given set is a subspace of \mathbb{R}^4 . If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.

a)
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + y = 0 \text{ and } z + w = 0 \right\}$$

b)
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid xy - zw = 0 \right\}$$

Solution.

a) The condition "x + y = 0 and z + w = 0" means that the vectors in V are the solutions to the system of homogeneous equations

$$x + y = 0$$
$$z + w = 0.$$

In other words, *V* is the null space of the matrix

$$\left(\begin{array}{rrrr}1&1&0&0\\0&0&1&1\end{array}\right).$$

A null space is automatically a subspace, so *V* is a subspace. Alternatively, we can verify the subspace properties:

(1) The zero vector is in V, since 0 + 0 = 0 and 0 + 0 = 0.

(2) If
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ are in V . Compute $u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}$.

Are $(x_1 + x_2) + (y_1 + y_2) = 0$ and $(z_1 + z_2) + (w_1 + w_2) = 0$? Yes:

$$(x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) = 0 + 0 = 0,$$

 $(z_1 + z_2) + (w_1 + w_2) = (z_1 + w_1) + (z_2 + w_2) = 0 + 0 = 0.$

(3) If
$$u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$$
 is in V then so is cu for any scalar:
$$cx_1 + cy_1 = c(x_1 + y_1) = c(0) = 0, \qquad cz_1 + cw_1 = c(z_1 + w_1) = c(0) = 0.$$

b) Not a subspace. Note
$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 and $v = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ are in W , but $u + v$ is not in W .

$$u + v = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad 1 \cdot 1 - 0 \cdot 0 = 1 \neq 0. \quad (W \text{ is not closed under addition})$$

- **5.** This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other.
 - a) True or false: If A is a 3×100 matrix of rank 2, then dim(NulA) = 97.
 - **b)** For u and \mathcal{B} from problem 2, find $[u]_{\mathcal{B}}$ (the \mathcal{B} -coordinates of u).

c) Let
$$\mathcal{D} = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$$
, and suppose $[x]_{\mathcal{D}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find x .

Solution.

- a) No. By the Rank Theorem, rank(A) + dim(NulA) = 100, so dim(NulA) = 98.
- **b)** u is in V if and only if $c_1b_1+c_2b_2=u$ for some c_1 and c_2 , in which case $[u]_{\mathcal{B}}=\begin{pmatrix}c_1\\c_2\end{pmatrix}$. We form the augmented matrix $\begin{pmatrix}b_1&b_2\mid u\end{pmatrix}$ and solve:

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 10 \\ 2 & 3 & 7 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 9 \\ 0 & 2 & 6 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

We found $c_1 = -1$ and $c_2 = 3$. This means $-b_1 + 3b_2 = u$, so $[u]_{\mathcal{B}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

c) From
$$[x]_{\mathcal{D}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
, we have

$$x = -d_1 + 3d_2 = -\binom{-2}{1} + 3\binom{3}{1} = \binom{2}{-1} + \binom{9}{3} = \binom{11}{2}.$$