Math 1553 Worksheet §2.8 (and some 2.9)

1. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

Solution.

Finding a basis for Nul A means finding the parametric vector form of the solution to $A x=0$. First we row reduce:

$$
\left(\begin{array}{rrrrr}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{rrrrr}
1 & 0 & 5 & -6 & 1 \\
0 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

so x_{3}, x_{4}, x_{5} are free, and

$$
\begin{aligned}
& \qquad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-5 x_{3}+6 x_{4}-x_{5} \\
3 x_{3}-x_{4} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right) . \\
& \text { Therefore, a basis for Nul } A \text { is }\left\{\left(\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)\right\} .
\end{aligned}
$$

To find a basis for $\operatorname{Col} A$, we use the pivot columns as they were written in the original matrix A, not its RREF. These are the first two columns:

$$
\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\} .
$$

2. Consider the following vectors in \mathbf{R}^{3} :

$$
b_{1}=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \quad b_{2}=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right) \quad u=\left(\begin{array}{c}
1 \\
10 \\
7
\end{array}\right)
$$

Let $V=\operatorname{Span}\left\{b_{1}, b_{2}\right\}$.
a) Explain why $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ is a basis for V.
b) Determine if u is in V.
c) Find a vector b_{3} such that $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbf{R}^{3}.

Solution.

a) A quick check shows that b_{1} and b_{2} are linearly independent (verify!), and we already know they span V, so $\left\{b_{1}, b_{2}\right\}$ is a basis for V.
b) u is in V if and only if $c_{1} b_{1}+c_{2} b_{2}=u$ for some c_{1} and c_{2} (in which case $[u]_{\mathcal{B}}=\binom{c_{1}}{c_{2}}$ looking ahead to problem 5(b)). We form the augmented matrix $\left(\begin{array}{ll}b_{1} & b_{2} \mid u\end{array}\right)$ and see if the system is consistent.

$$
\left(\begin{array}{ll|r}
2 & 1 & 1 \\
2 & 4 & 10 \\
2 & 3 & 7
\end{array}\right) \xrightarrow[R_{3}=R_{3}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ll|l}
2 & 1 & 1 \\
0 & 3 & 9 \\
0 & 2 & 6
\end{array}\right) \xrightarrow[R_{2}=R_{2} / 3]{R_{3}=R_{3}-\frac{2}{3} R_{2}}\left(\begin{array}{ll|l}
2 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

The right column is not a pivot column, so the system is consistent, therefore u is in $\operatorname{Span}\left\{b_{1}, b_{2}\right\}$: in fact, $u=-b_{1}+3 b_{2}$.
c) If we choose b_{3} which is not in $\operatorname{Span}\left\{b_{1}, b_{2}\right\}$, then $\left\{b_{1}, b_{2}, b_{3}\right\}$ is linearly independent by the increasing span criterion. Any three linearly independent vectors span \mathbf{R}^{3} : the matrix with columns b_{1}, b_{2}, b_{3} is square, so if there is a pivot in every column, then there is a pivot in every row.

We could choose $b_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, since $\left(\begin{array}{ll}b_{1} & b_{2} \mid b_{3}\end{array}\right)$ is inconsistent:

$$
\left(\begin{array}{ll|l}
2 & 1 & 1 \\
2 & 4 & 0 \\
2 & 3 & 0
\end{array}\right) \xrightarrow[R_{3}=R_{3}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ll|r}
2 & 1 & 0 \\
0 & 3 & -1 \\
0 & 2 & -1
\end{array}\right) \xrightarrow{R_{3}=R_{3}-\frac{2}{3} R_{2}}\left(\begin{array}{ll|r}
2 & 1 & 1 \\
0 & 3 & -1 \\
0 & 0 & -1 / 3
\end{array}\right) .
$$

3. For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
a) If A is an $n \times n$ matrix and $\operatorname{Col} A=\mathbf{R}^{n}$, then $A x=0$ has a nontrivial solution.
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.
c) Give an example of 2×2 matrix whose column space is the same as its null space.

Solution.

a) No. Since $\operatorname{Col}(A)=\mathbf{R}^{n}$, the linear transformation $T(x)=A x$ from \mathbf{R}^{n} to \mathbf{R}^{n} is onto, hence T is one-to-one, so $A x=0$ has only the trivial solution.
b) Maybe. If $A x=0$ has only the trivial solution and $m=n$, then A is invertible, so the columns of A are linearly independent and span \mathbf{R}^{m}.

If $m>n$ then the statement is false. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its columns form only a 2-plane within \mathbf{R}^{3}.
c) Take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Its null space and column space are $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
4. In each case, determine whether the given set is a subspace of \mathbf{R}^{4}. If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.
a) $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\mathbf{R}^{4} \mid x+y=0$ and $\left.z+w=0\right\}$
b) $W=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x y-z w=0\right\}$

Solution.

a) The condition " $x+y=0$ and $z+w=0$ " means that the vectors in V are the solutions to the system of homogeneous equations

$$
\begin{aligned}
x+y & =0 \\
z+w & =0 .
\end{aligned}
$$

In other words, V is the null space of the matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

A null space is automatically a subspace, so V is a subspace.
Alternatively, we can verify the subspace properties:
(1) The zero vector is in V, since $0+0=0$ and $0+0=0$.
(2) If $u=\left(\begin{array}{c}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ and $v=\left(\begin{array}{c}x_{2} \\ y_{2} \\ z_{2} \\ w_{2}\end{array}\right)$ are in V. Compute $u+v=\left(\begin{array}{c}x_{1}+x_{2} \\ y_{1}+y_{2} \\ z_{1}+z_{2} \\ w_{1}+w_{2}\end{array}\right)$.

Are $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=0$ and $\left(z_{1}+z_{2}\right)+\left(w_{1}+w_{2}\right)=0$? Yes:

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)=0+0=0, \\
& \left(z_{1}+z_{2}\right)+\left(w_{1}+w_{2}\right)=\left(z_{1}+w_{1}\right)+\left(z_{2}+w_{2}\right)=0+0=0 .
\end{aligned}
$$

(3) If $u=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ is in V then so is $c u$ for any scalar: $c x_{1}+c y_{1}=c\left(x_{1}+y_{1}\right)=c(0)=0, \quad c z_{1}+c w_{1}=c\left(z_{1}+w_{1}\right)=c(0)=0$.
b) Not a subspace. Note $u=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $v=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ are in W, but $u+v$ is not in W. $u+v=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right), \quad 1 \cdot 1-0 \cdot 0=1 \neq 0 . \quad(W$ is not closed under addition $)$
5. This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other.
a) True or false: If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.
b) For u and \mathcal{B} from problem 2 , find $[u]_{\mathcal{B}}$ (the \mathcal{B}-coordinates of u).
c) Let $\mathcal{D}=\left\{\binom{-2}{1},\binom{3}{1}\right\}$, and suppose $[x]_{\mathcal{D}}=\binom{-1}{3}$. Find x.

Solution.

a) No. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{so} \operatorname{dim}(\operatorname{Nul} A)=98$.
b) u is in V if and only if $c_{1} b_{1}+c_{2} b_{2}=u$ for some c_{1} and c_{2}, in which case $[u]_{\mathcal{B}}=\binom{c_{1}}{c_{2}}$. We form the augmented matrix $\left(\begin{array}{ll}b_{1} & \left.b_{2} \mid u\right) \text { and solve: }\end{array}\right.$
$\left(\begin{array}{rr|r}2 & 1 & 1 \\ 2 & 4 & 10 \\ 2 & 3 & 7\end{array}\right) \xrightarrow[R_{3}=R_{3}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ll|l}2 & 1 & 1 \\ 0 & 3 & 9 \\ 0 & 2 & 6\end{array}\right) \xrightarrow[R_{2}=R_{2} / 3]{R_{3}=R_{3}-\frac{2}{3} R_{2}}\left(\begin{array}{ll|l}2 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1} / 2]{R_{1}=R_{1}-R_{2}}\left(\begin{array}{rr|r}1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$.
We found $c_{1}=-1$ and $c_{2}=3$. This means $-b_{1}+3 b_{2}=u$, so $[u]_{\mathcal{B}}=\binom{-1}{3}$.
c) From $[x]_{\mathcal{D}}=\binom{-1}{3}$, we have

$$
x=-d_{1}+3 d_{2}=-\binom{-2}{1}+3\binom{3}{1}=\binom{2}{-1}+\binom{9}{3}=\binom{11}{2} .
$$

