MATH 1553, C. JANKOWSKI MIDTERM 2

Name		Section	
------	--	---------	--

Please **read all instructions** carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Scoring Page

Please do not write on this page.

1	2	3	4	5	Total

a) Complete the following definition (be mathematically precise!): A set of vectors $\{v_1, v_2, ..., v_p\}$ in \mathbf{R}^n is *linearly independent* if...

b) Let $A = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$. If *A* is invertible, find A^{-1} . If *A* is not invertible, justify why.

The remaining problems are true or false. Answer true if the statement is *always* true. Otherwise, answer false. You do not need to justify your answer.

- c) **T F** If *A* is an $n \times n$ matrix and the columns of *A* span \mathbb{R}^n , then Ax = 0 has only the trivial solution.
- d) **T F** If *A* is a 6×7 matrix and the null space of *A* has dimension 4, then the column space of *A* is a 2-plane.
- e) **T F** If *A* is an $n \times n$ matrix and Ax = b has exactly one solution for some *b* in **R**^{*n*}, then *A* is invertible.
- f) **T F** If *A* is an $m \times n$ matrix and m > n, then the linear transformation T(x) = Ax cannot be one-to-one.

Problem 2.

Parts (a), (b), and (c) are unrelated. **a)** Let $V = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Fill in the blank: the dimension of *V* is _____. **b)** Let $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in $\mathbb{R}^3 \mid x - y - z = 0 \right\}$. Is *W* a subspace of \mathbb{R}^3 ? (no justification required) YES NO **c)** The famous philologist is obsessed with the set of vectors $\left\{ \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ h \\ -7 \end{pmatrix} \right\}$ where *h* is some real number. Find all values of *h* that make the set linearly dependent. Let $T : \mathbf{R}^3 \to \mathbf{R}^2$ be the linear transformation given by

$$T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 - x_2\\ 2x_1 \end{pmatrix},$$

and let $U : \mathbf{R}^2 \to \mathbf{R}^2$ be reflection about the line y = x.

a) Write the standard matrix A for T and the standard matrix B for U.

b) Is *U* one-to-one? Briefly justify your answer.

c) Find the standard matrix for $U \circ T$.

d) Is the transformation $U \circ T$ onto? Briefly justify your answer.

Problem 4.

Consider the following matrix *A* and its reduced row echelon form: $\begin{pmatrix} 1 & -2 & 4 \end{pmatrix}$ $\begin{pmatrix} 1 & -2 & 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \\ -2 & 4 & -8 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

a) Find a basis for Nul *A*.

b) Find a basis \mathcal{B} for Col A.

c) Let
$$x = \begin{pmatrix} -2 \\ -1 \\ -1 \\ 4 \end{pmatrix}$$
. Is x in Col A?
If your answer is no, justify why x is not in Col A.
If your answer is yes, find $[x]_{\mathcal{B}}$.

Problem 5.

Parts (a) and (b) are unrelated.

a) Suppose that a linear transformation $T : \mathbf{R}^2 \to \mathbf{R}^2$ satisfies $T \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and

$$T\begin{pmatrix}3\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}$$
. Find $T\begin{pmatrix}4\\-1\end{pmatrix}$.

b) Write a single matrix *A* that satisfies both of the following two properties:

- Col *A* is a subspace of R⁴, and
 Nul *A* is the line y = 10x in R².

[Scratch work]