Math 1553 Worksheet: Lines and planes in \mathbb{R}^{n} and §1.1

1. Which of the following equations are linear? Justify your answers.
a) $3 x_{1}+\sqrt{x_{2}}=4$
b) $x_{1}=x_{2}-x_{3}+10 x_{4}$.
c) $\pi x+\ln (13) y+z=\sqrt[3]{2}$
2. Find all values of h so that the lines $x+h y=-5$ and $2 x-8 y=6$ do not intersect.
3. For each of the following, answer true or false. Justify your answer.
a) Every system of linear equations has at least one solution.
b) There is a system of linear equations that has exactly 5 solutions.
c) If a, b, and c are real numbers, then the equation $a x+b y=c$ for (x, y, z) in \mathbf{R}^{3} describes a line.
4. The picture below represents the temperatures at four interior nodes of a mesh.

Let T_{1}, \ldots, T_{4} be the temperatures at nodes 1 through 4 . Suppose that the temperature at each node is the average of the four nearest nodes. For example,

$$
T_{1}=\frac{10+20+T_{2}+T_{4}}{4} .
$$

a) Write a system of four linear equations whose solution would give the temperatures T_{1}, \ldots, T_{4}.
b) Write an augmented matrix that represents that system of equations.
5. Consider the following three planes, where we use (x, y, z) to denote points in \mathbf{R}^{3} :

$$
\begin{gathered}
2 x+4 y+4 z=1 \\
2 x+5 y+2 z=-1 \\
y+3 z=8 .
\end{gathered}
$$

Do all three of the planes intersect? If so, do they intersect at a single point, a line, or a plane?

